cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032202 Sequence (a(n): n >= 1) that shifts left 2 places under the "CIK" (necklace, indistinct, unlabeled) transform and satisfies a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 10, 22, 41, 92, 193, 435, 963, 2215, 5051, 11754, 27375, 64381, 151898, 360661, 859149, 2055804, 4934428, 11883930, 28699336, 69497354, 168691424, 410399073, 1000486306, 2443761830, 5979742904, 14656709518
Offset: 1

Views

Author

Keywords

Comments

From Petros Hadjicostas, Dec 30 2018: (Start)
a(n+2) = (1/n)*Sum_{d|n} phi(n/d)*c(d), where c(n) = n*a(n) + Sum_{s=1..n-1} c(s)*a(n-s) with a(1) = a(2) = 1, c(1) = 1, and c(2) = 3.
G.f.: If A(x) = Sum_{n>=1} a(n)*x^n, then Sum_{n>=1} a(n+2)*x^n = -Sum_{n>=1} (phi(n)/n)*log(1-A(x^n)).
The g.f. of the auxiliary sequence (c(n): n>=1) is C(x) = Sum_{n>=1} c(n)*x^n = x*(dA(x)/dx)/(1-A(x)) = x + 3*x^2 + 7*x^3 + 19*x^4 + 46*x^5 + 117*x^6 + 281*x^7 + 707*x^8 + 1717*x^9 + 4288*x^10 + 10583*x^11 + 26401*x^12 + ...
(End)
The first two terms of the sequence must be specified. In general, if the sequence (b(n): n >= 1) is such that (b(n+2): n >= 1) = CIK((b(n): n >= 1)), then b(3) = b(1), b(4) = (1/2)*(b(1)^2 + 2*b(2) + b(1)), b(5) = (b(1)/3)*(b(1)^2 + 3*b(2) + 5), and so on. - Petros Hadjicostas, Jan 01 2019

Crossrefs

Programs

  • Mathematica
    m = 33; a[1] = a[2] = 1; A[_] = 0;
    Do[A[x_] = x(a[1] + x a[2] - x Sum[EulerPhi[n] Log[1-A[x^n]]/n, {n, 1, m}]) + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Sep 17 2019 *)
  • PARI
    CIK(p,n)={sum(d=1, n, eulerphi(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
    seq(n)={my(p=1+O(x));for(i=1, n\2, p=1+x+x*CIK(x*p, 2*i)); Vec(p+O(x^n))} \\ Andrew Howroyd, Jun 20 2018

Extensions

Name modified by Petros Hadjicostas, Jan 01 2019