cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032240 Number of identity bracelets of n beads of 3 colors.

Original entry on oeis.org

3, 3, 1, 3, 12, 37, 117, 333, 975, 2712, 7689, 21414, 60228, 168597, 475024, 1338525, 3788400, 10741575, 30556305, 87109332, 248967446, 713025093, 2046325125, 5883406830, 16944975036, 48880411272, 141212376513
Offset: 1

Views

Author

Keywords

Comments

For n>2 also number of asymmetric bracelets with n beads of three colors. - Herbert Kociemba, Nov 29 2016

Crossrefs

Column k=3 of A309528 for n >= 3.

Programs

  • Mathematica
    m = 3; (* asymmetric bracelets of n beads of m colors *) Table[Sum[MoebiusMu[d] (m^(n/d)/n - If[OddQ[n/d], m^((n/d + 1)/2), ((m + 1) m^(n/(2 d))/2)]), {d, Divisors[n]}]/2, {n, 3, 20}] (* Robert A. Russell, Mar 18 2013 *)
    mx=40;gf[x_,k_]:=Sum[MoebiusMu[n]*(-Log[1-k*x^n]/n-Sum[Binomial[k,i]x^(n i),{i,0,2}]/(1-k x^(2n)))/2,{n,mx}];ReplacePart[Rest[CoefficientList[Series[gf[x,3],{x,0,mx}],x]],{1->3,2->3}] (* Herbert Kociemba, Nov 29 2016 *)
  • PARI
    a(n)={if(n<3, binomial(3,n), sumdiv(n, d, moebius(n/d)*(3^d/n - if(d%2, 3^((d+1)/2), 2*3^(d/2))))/2)} \\ Andrew Howroyd, Sep 12 2019

Formula

"DHK" (bracelet, identity, unlabeled) transform of 3, 0, 0, 0...
From Herbert Kociemba, Nov 29 2016: (Start)
More generally, gf(k) is the g.f. for the number of asymmetric bracelets with n beads of k colors.
gf(k): Sum_{n>=1} mu(n)*( -log(1-k*x^n)/n - Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)) )/2 (End)