A032248 "DHK[ 7 ]" (bracelet, identity, unlabeled, 7 parts) transform of 1,1,1,1,...
4, 10, 28, 56, 113, 197, 340, 544, 856, 1284, 1896, 2709, 3816, 5247, 7128, 9504, 12540, 16302, 21001, 26728, 33748, 42185, 52364, 64448, 78832, 95725, 115600, 138720, 165648, 196707, 232560, 273600, 320601, 374034, 434796, 503448, 581020, 668173, 766084
Offset: 10
Links
- Colin Barker, Table of n, a(n) for n = 10..1000
- C. G. Bower, Transforms (2)
- Petros Hadjicostas, The aperiodic version of Herbert Kociemba's formula for bracelets with no reflection symmetry, 2019.
- Index entries for linear recurrences with constant coefficients, signature (3,0,-8,6,6,-8,1,0,-1,8,-6,-6,8,0,-3,1).
Programs
-
Mathematica
LinearRecurrence[{3,0,-8,6,6,-8,1,0,-1,8,-6,-6,8,0,-3,1},{4,10,28,56,113,197,340,544,856,1284,1896,2709,3816,5247,7128,9504},40] (* Harvey P. Dale, Jul 08 2024 *)
-
PARI
Vec(x^10*(4 - 2*x - 2*x^2 + 4*x^3 + x^4 - 2*x^5 + x^6) / ((1 - x)^7*(1 + x)^3*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)) + O(x^40)) \\ Colin Barker, Feb 25 2019
Formula
G.f.: x^7*(1/(14*(1 - x)^7) - 1/((2*(1 - x))*(1 - x^2)^3) + 3/(7*(1 - x^7))). - Petros Hadjicostas, Feb 24 2019
a(n) = 3*a(n-1) - 8*a(n-3) + 6*a(n-4) + 6*a(n-5) - 8*a(n-6) + a(n-7) - a(n-9) + 8*a(n-10) - 6*a(n-11) - 6*a(n-12) + 8*a(n-13) - 3*a(n-15) + a(n-16) for n>25. - Colin Barker, Feb 25 2019
Comments