A032265 Number of ways to partition n labeled elements into pie slices of at least 2 elements allowing the pie to be turned over.
1, 0, 1, 1, 4, 11, 41, 162, 925, 5945, 47017, 402788, 3895937, 40556595, 461544253, 5625446270, 73716523405, 1028179882589, 15257484239777, 239529471989352, 3971376169852777, 69288230115817655, 1269563315949912469, 24366794306903776610, 488969030312192567573
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- C. G. Bower, Transforms (2)
Programs
-
PARI
seq(n)={my(p=exp(x + O(x*x^n))-x-1); Vec(1 + serlaplace(p + p^2/2 - log(1-p))/2)} \\ Andrew Howroyd, Sep 12 2018
Formula
"DIJ" (bracelet, indistinct, labeled) transform of 0, 1, 1, 1, ...
E.g.f.: 1 + (g(x) + g(x)^2/2 - log(1-g(x)))/2 where g(x) = exp(x) - x - 1. - Andrew Howroyd, Sep 12 2018
Extensions
a(0)=1 prepended and terms a(22) and beyond from Andrew Howroyd, Sep 12 2018