A032287 "DIK" (bracelet, indistinct, unlabeled) transform of 1,2,3,4,...
1, 3, 6, 13, 24, 51, 97, 207, 428, 946, 2088, 4831, 11209, 26717, 64058, 155725, 380400, 936575, 2314105, 5744700, 14300416, 35708268, 89359536, 224121973, 563126689, 1417378191, 3572884062, 9019324297, 22797540648
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- A. K. Agarwal, n-colour compositions, Indian J. Pure Appl. Math. 31 (11) (2000), 1421-1427.
- C. G. Bower, Transforms (2).
- Meghann Moriah Gibson, Combinatorics of compositions, Master of Science, Georgia Southern University, 2017.
- Meghann Moriah Gibson, Daniel Gray, and Hua Wang, Combinatorics of n-color compositions, Discrete Mathematics 341 (2018), 3209-3226.
- Arnold Knopfmacher and Neville Robbins, Some properties of dihedral compositions, Util. Math. 92 (2013), 207-220.
- Index entries for sequences related to bracelets
Programs
-
Maple
DIK := proc(L::list) local x,cidx,ncyc,d,gd,g,g2,n ; n := nops(L) ; g := add(op(i,L)*x^i,i=1..n) ; # wrap into the cycle index of the cyclic group C_n cidx := 0 ; for ncyc from 1 to n do for d in numtheory[divisors](ncyc) do gd := subs(x=x^d,g) ; cidx := cidx+1/ncyc*numtheory[phi](d)*gd^(ncyc/d) ; end do: end do: # cycle index is half of th eone for the cyclic group plus two # different branches or D_n with even or odd n cidx := cidx/2 ; g2 := subs(x=x^2,g) ; for ncyc from 1 to n do if type(ncyc,'odd') then cidx := cidx+ g*g2^((ncyc-1)/2)/2 ; else cidx := cidx+ (g^2*g2^((ncyc-2)/2) + g2^(ncyc/2))/4 ; end if; end do: taylor(cidx,x=0,nops(L)) ; gfun[seriestolist](%) ; end proc: A032287_list := proc(n) local ele ; ele := [seq(i,i=1..40)] ; DIK(ele) ; end proc: A032287_list(50) ; # R. J. Mathar, Feb 14 2025
-
Mathematica
seq[n_] := x(1 + x - 2 x^2 + x^3 + x^4)/((1 - x)^2 (1 - x - x^2)(1 + x - x^2)) + Sum[EulerPhi[d]/d Log[(1 - x^d)^2/(1 - 3 x^d + x^(2d)) + O[x]^(n+1)], {d, 1, n}] // CoefficientList[#, x]& // Rest // #/2&; seq[30] (* Jean-François Alcover, Sep 17 2019, from PARI *)
-
PARI
seq(n)={Vec(x*(1 + x - 2*x^2 + x^3 + x^4)/((1 - x)^2*(1 - x - x^2)*(1 + x - x^2)) + sum(d=1, n, eulerphi(d)/d*log((1 - x^d)^2/(1 - 3*x^d + x^(2*d)) + O(x*x^n))))/2} \\ Andrew Howroyd, Jun 20 2018
Formula
From Petros Hadjicostas, Jun 21 2019: (Start)
a(n) = ( F(n+4) + (-1)^n * F(n-4) - 2 * (n + 1) + (1/n) * Sum_{d|n} phi(n/d) * L(2*d) )/2 for n >= 4, where F(n) = A000045(n) and L(n) = A000032(n) are the usual n-th Fibonacci and n-th Lucas numbers, respectively.
G.f.: (1/2) * Sum_{d >= 1} (phi(d)/d) * log((1 - x^d)^2 / (1 - 3*x^d + x^(2*d))) + (1/2) * x * (1 + x - 2*x^2 + x^3 + x^4)/((1 - x)^2 * (1 + x - x^2) * (1 - x - x^2)).
(End)
Comments