A032296 Number of aperiodic bracelets (turnover necklaces) with n beads of 5 colors.
5, 10, 30, 105, 372, 1460, 5890, 25275, 110050, 492744, 2227270, 10195070, 46989180, 218096780, 1017447736, 4768944375, 22440372240, 105966686200, 501938733550, 2384200190580, 11353290083380
Offset: 1
Keywords
Links
- C. G. Bower, Transforms (2)
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- N. J. A. Sloane, Transforms
- Index entries for sequences related to bracelets
Crossrefs
Column 5 of A276550.
Programs
-
Mathematica
mx=40;gf[x_,k_]:=Sum[ MoebiusMu[n]*(-Log[1-k*x^n]/n+Sum[Binomial[k,i]x^(n i),{i,0,2}]/( 1-k x^(2n)))/2,{n,mx}]; CoefficientList[Series[gf[x,5],{x,0,mx}],x] (* Herbert Kociemba, Nov 28 2016 *)
Formula
MOEBIUS transform of A032276.
From Herbert Kociemba, Nov 28 2016: (Start)
More generally, gf(k) is the g.f. for the number of bracelets with primitive period n and beads of k colors.
gf(k): Sum_{n>=1} mu(n)*( -log(1-k*x^n)/n + Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)) )/2. (End)