cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A265951 Expansion of Product_{k>=1} 1/(1 - 2*k*x^k).

Original entry on oeis.org

1, 2, 8, 22, 68, 170, 484, 1166, 3048, 7274, 18000, 41806, 100684, 229258, 535692, 1206230, 2758944, 6123650, 13798088, 30284894, 67272756, 146426002, 321513284, 693944814, 1510245960, 3236648578, 6985572672, 14885926182, 31904642348, 67618415690
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 19 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1,
          2^n, b(n, i-1) +i*2*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..32);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-2*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * n * 2^n, where c = 1/2 * Product_{m>=3} 1/(1 - m/2^(m-1)) = 9.281573281805057363737677116134642024212942973614535341005126953773818...

A265955 Expansion of Product_{k>=1} (1 + 2*k*x^k)/(1 - 2*k*x^k).

Original entry on oeis.org

1, 4, 16, 60, 192, 596, 1776, 5020, 13760, 36916, 96336, 246316, 619392, 1530548, 3729392, 8976364, 21337920, 50195268, 116977232, 270114764, 618712640, 1406843940, 3176387120, 7126185948, 15894370816, 35253947940, 77796242768, 170868178332, 373606888128
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 19 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[(1+2*k*x^k)/(1-2*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * n * 2^n, where c = 2 * Product_{m>=3} (1 + 2/(2^(m-1)/m - 1)) = 193.4198278838721371054040810054045645734538119720773785523616944906739...
Showing 1-2 of 2 results.