cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A265974 Expansion of Product_{k>=1} 1/(1 - 3*k*x^k).

Original entry on oeis.org

1, 3, 15, 54, 210, 699, 2484, 7995, 26610, 84186, 269940, 839238, 2634579, 8098194, 25032282, 76388265, 233791104, 709501596, 2157488730, 6523204836, 19747491810, 59558682132, 179762506329, 541222906812, 1630300772106, 4902697929306, 14748249476553
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 19 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1,
          3^n, b(n, i-1) +i*3*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..32);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-3*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^n, where c = Product_{m>=2} 1/(1 - m/3^(m-1)) = 5.86277744540963226378877460838259757442241952947887939654316926419876...

A265975 Expansion of Product_{k>=1} 1/(1 - 4*k*x^k).

Original entry on oeis.org

1, 4, 24, 108, 512, 2164, 9464, 39004, 163008, 663588, 2713752, 10954764, 44328512, 178160724, 716821752, 2874497660, 11532111232, 46187508676, 185028540696, 740595436652, 2964628293504, 11862432443764, 47467812675320, 189902835709212, 759756868215872
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 19 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1,
          4^n, b(n, i-1) +i*4*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..32);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-4*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 4^n, where c = Product_{m>=2} 1/(1 - m/4^(m-1)) = 2.700170514502619666262858845683166558216386190684736249639219328278569...

A265976 Expansion of Product_{k>=1} 1/(1 - 5*k*x^k).

Original entry on oeis.org

1, 5, 35, 190, 1070, 5525, 29080, 147485, 752790, 3789170, 19105800, 95794930, 480650335, 2406018490, 12047084370, 60264282575, 301493182380, 1507758356660, 7540528037090, 37705593514220, 188545393000350, 942756783659980, 4713958620697385, 23570092258449540
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 19 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1,
          5^n, b(n, i-1) +i*5*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..32);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-5*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 5^n, where c = Product_{m>=2} 1/(1 - m/5^(m-1)) = 1.977268427518901757865749340705853730491796767544158844539130847296...

A032309 "EFK" (unordered, size, unlabeled) transform of 2,4,6,8,...

Original entry on oeis.org

1, 2, 4, 14, 20, 50, 112, 190, 328, 666, 1340, 2038, 3740, 5954, 10792, 19542, 30048, 48290, 80164, 124694, 204484, 347610, 515184, 810750, 1240296, 1932722, 2887820, 4557838, 7126652, 10463330, 15768168, 23499934
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[(1+2*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 19 2015 *)
  • PARI
    seq(n)={Vec(prod(k=1, n, 1 + 2*k*x^k + O(x*x^n)))} \\ Andrew Howroyd, Sep 20 2018

Formula

G.f.: Product_{k >= 1} (1 + 2*k*x^k).

Extensions

a(0)=1 prepended by Andrew Howroyd, Sep 20 2018

A265955 Expansion of Product_{k>=1} (1 + 2*k*x^k)/(1 - 2*k*x^k).

Original entry on oeis.org

1, 4, 16, 60, 192, 596, 1776, 5020, 13760, 36916, 96336, 246316, 619392, 1530548, 3729392, 8976364, 21337920, 50195268, 116977232, 270114764, 618712640, 1406843940, 3176387120, 7126185948, 15894370816, 35253947940, 77796242768, 170868178332, 373606888128
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 19 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[(1+2*k*x^k)/(1-2*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * n * 2^n, where c = 2 * Product_{m>=3} (1 + 2/(2^(m-1)/m - 1)) = 193.4198278838721371054040810054045645734538119720773785523616944906739...

A266137 Expansion of Product_{k>=1} 1/(1 - k*(x^(2*k-1))).

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 10, 14, 20, 33, 50, 68, 106, 147, 214, 325, 445, 624, 916, 1259, 1780, 2553, 3477, 4821, 6794, 9340, 12777, 17808, 24266, 32998, 45764, 61770, 83593, 114594, 154039, 208617, 283232, 379040, 509270, 687448, 919709, 1228319, 1650595, 2195745
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 21 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[1/(1-k*(x^(2*k-1))), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 2^(n/3), where
c = 2684.3207660224428945778151546260301591494083790... if mod(n,3) = 0
c = 2683.9203893332021512699407898064547843826991184... if mod(n,3) = 1
c = 2683.7635451650373491773203224442103370428384569... if mod(n,3) = 2.

A266138 Expansion of Product_{k>=1} 1/(1 - k*(x^(2*k+1))).

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 1, 3, 2, 5, 7, 7, 11, 13, 24, 26, 35, 44, 69, 78, 112, 150, 188, 245, 318, 429, 537, 729, 924, 1177, 1534, 1965, 2518, 3287, 4108, 5394, 6857, 8604, 11022, 14073, 17899, 22549, 28900, 36182, 45954, 58395, 72912, 92118, 116201, 146279
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 21 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=80; CoefficientList[Series[Product[1/(1-k*(x^(2*k+1))), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^(n/7), where
c = 617630.638335... if mod(n,7) = 0
c = 617630.321433... if mod(n,7) = 1
c = 617630.360795... if mod(n,7) = 2
c = 617630.429073... if mod(n,7) = 3
c = 617630.357078... if mod(n,7) = 4
c = 617630.421636... if mod(n,7) = 5
c = 617630.341606... if mod(n,7) = 6.
Showing 1-7 of 7 results.