A265951
Expansion of Product_{k>=1} 1/(1 - 2*k*x^k).
Original entry on oeis.org
1, 2, 8, 22, 68, 170, 484, 1166, 3048, 7274, 18000, 41806, 100684, 229258, 535692, 1206230, 2758944, 6123650, 13798088, 30284894, 67272756, 146426002, 321513284, 693944814, 1510245960, 3236648578, 6985572672, 14885926182, 31904642348, 67618415690
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0 or i=1,
2^n, b(n, i-1) +i*2*b(n-i, min(n-i, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..32); # Alois P. Heinz, Aug 23 2019
-
nmax=40; CoefficientList[Series[Product[1/(1-2*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A265975
Expansion of Product_{k>=1} 1/(1 - 4*k*x^k).
Original entry on oeis.org
1, 4, 24, 108, 512, 2164, 9464, 39004, 163008, 663588, 2713752, 10954764, 44328512, 178160724, 716821752, 2874497660, 11532111232, 46187508676, 185028540696, 740595436652, 2964628293504, 11862432443764, 47467812675320, 189902835709212, 759756868215872
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0 or i=1,
4^n, b(n, i-1) +i*4*b(n-i, min(n-i, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..32); # Alois P. Heinz, Aug 23 2019
-
nmax=40; CoefficientList[Series[Product[1/(1-4*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A265976
Expansion of Product_{k>=1} 1/(1 - 5*k*x^k).
Original entry on oeis.org
1, 5, 35, 190, 1070, 5525, 29080, 147485, 752790, 3789170, 19105800, 95794930, 480650335, 2406018490, 12047084370, 60264282575, 301493182380, 1507758356660, 7540528037090, 37705593514220, 188545393000350, 942756783659980, 4713958620697385, 23570092258449540
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0 or i=1,
5^n, b(n, i-1) +i*5*b(n-i, min(n-i, i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..32); # Alois P. Heinz, Aug 23 2019
-
nmax=40; CoefficientList[Series[Product[1/(1-5*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Showing 1-3 of 3 results.