cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032311 Number of ways to partition n labeled elements into sets of different sizes of at least 2.

Original entry on oeis.org

1, 0, 1, 1, 1, 11, 16, 57, 85, 1507, 2896, 12563, 51074, 138789, 2954407, 7959304, 38908797, 178913747, 1100724688, 3444477663, 114462103390, 358862880667, 2217915340389, 11257750157888, 73465378482214, 515469706792741, 2247201695123581, 98470393431973852
Offset: 0

Views

Author

Keywords

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`(i<2, 0, b(n, i-1)+
          `if`(i>n, 0, b(n-i, i-1)*binomial(n, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 11 2016
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 2, 0, b[n, i - 1] + If[i > n, 0, b[n - i, i - 1]*Binomial[n, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 27 2017, after Alois P. Heinz *)
  • PARI
    seq(n)={Vec(serlaplace(prod(k=2, n, 1 + x^k/k! + O(x*x^n))))} \\ Andrew Howroyd, Sep 11 2018

Formula

"EGJ" (unordered, element, labeled) transform of 0, 1, 1, 1...
E.g.f: Product_{k >= 2} (1 + x^k/k!). - Andrew Howroyd, Sep 11 2018

Extensions

a(0)=1 prepended by Alois P. Heinz, May 11 2016