A032311 Number of ways to partition n labeled elements into sets of different sizes of at least 2.
1, 0, 1, 1, 1, 11, 16, 57, 85, 1507, 2896, 12563, 51074, 138789, 2954407, 7959304, 38908797, 178913747, 1100724688, 3444477663, 114462103390, 358862880667, 2217915340389, 11257750157888, 73465378482214, 515469706792741, 2247201695123581, 98470393431973852
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..698
- C. G. Bower, Transforms (2)
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0, b(n, i-1)+ `if`(i>n, 0, b(n-i, i-1)*binomial(n, i)))) end: a:= n-> b(n$2): seq(a(n), n=0..30); # Alois P. Heinz, May 11 2016
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 2, 0, b[n, i - 1] + If[i > n, 0, b[n - i, i - 1]*Binomial[n, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 27 2017, after Alois P. Heinz *)
-
PARI
seq(n)={Vec(serlaplace(prod(k=2, n, 1 + x^k/k! + O(x*x^n))))} \\ Andrew Howroyd, Sep 11 2018
Formula
"EGJ" (unordered, element, labeled) transform of 0, 1, 1, 1...
E.g.f: Product_{k >= 2} (1 + x^k/k!). - Andrew Howroyd, Sep 11 2018
Extensions
a(0)=1 prepended by Alois P. Heinz, May 11 2016