A032357 Convolution of Catalan numbers and powers of -1.
1, 0, 2, 3, 11, 31, 101, 328, 1102, 3760, 13036, 45750, 162262, 580638, 2093802, 7601043, 27756627, 101888163, 375750537, 1391512653, 5172607767, 19293659253, 72188904387, 270870709263, 1019033438061, 3842912963391, 14524440108761
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Shalosh B. Ekhad and Mingjia Yang, Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences, 2017.
Crossrefs
Programs
-
Maple
rec:= (n+1)*a(n) +3*(-n+1)*a(n-1) +2*(-2*n+1)*a(n-2)=0: A:= gfun:-rectoproc({rec,a(0)=1,a(1)=0},a(n),remember): seq(A(n),n=0..50); # Robert Israel, May 22 2015
-
Mathematica
Table[Sum[(-1)^(k+n)*CatalanNumber[k],{k,0,n}],{n,0,60}] (* Alexander Adamchuk, Jul 03 2006 *) Round@Table[(-1)^n/GoldenRatio + CatalanNumber[n + 1] Hypergeometric2F1[1, n + 3/2, n + 3, -4], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Oct 02 2016 *) Table[(CatalanNumber[n] (2 + (n + 1) Hypergeometric2F1[1, -n, 1/2, 5/4]) - (-1)^n)/2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 03 2016 *)
-
Sage
def A032357(): f, c, n = 1, 1, 1 while True: yield f n += 1 c = c * (4*n - 6) // n f = c - f a = A032357() print([next(a) for in range(27)]) # _Peter Luschny, Nov 30 2016
Formula
G.f.: c(x)/(1 + x), where c(x) is the g.f. for the Catalan numbers A000108.
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(k), where C(k) = A000108(k).
a(n) = ((-1)^(n+1) - binomial(2*(n+1), n+1)*Sum_{k=0..n+1} (-5)^k*binomial(n+1, k)/binomial(2*k, k))/2.
a(n) = C(2*n, n)/(n+1) - a(n-1) = A000108(n) - a(n-1) with a(0) = 1. - Labos Elemer, Apr 26 2003
Conjecture: (n+1)*a(n) + 3*(-n+1)*a(n-1) + 2*(-2*n+1)*a(n-2) = 0. - R. J. Mathar, Nov 30 2012
Conjecture is true since the g.f. satisfies (x - 3*x^2 - 4*x^3)*g'(x) + (1 - 6*x^2)*g(x) = 1. - Robert Israel, May 22 2015
a(n) = (-1)^n/A001622 + A000108(n+1)*hypergeom([1, n + 3/2], [n + 3], -4). - Vladimir Reshetnikov, Oct 02 2016
a(n) ~ 2^(2*n + 2) / (5*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 03 2016
a(n) = (A000108(n) * (2 + (n + 1)*hypergeom([1,-n], [1/2], 5/4)) - (-1)^n)/2. - Vladimir Reshetnikov, Oct 03 2016
Extensions
More terms from Christian G. Bower, Apr 15 1998
More terms from Alexander Adamchuk, Jul 03 2006
Comments