cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032445 Number the digits of the decimal expansion of Pi: 3 is the first, 1 is the second, 4 is the third and so on; a(n) gives the starting position of the first occurrence of n.

Original entry on oeis.org

33, 2, 7, 1, 3, 5, 8, 14, 12, 6, 50, 95, 149, 111, 2, 4, 41, 96, 425, 38, 54, 94, 136, 17, 293, 90, 7, 29, 34, 187, 65, 1, 16, 25, 87, 10, 286, 47, 18, 44, 71, 3, 93, 24, 60, 61, 20, 120, 88, 58, 32, 49, 173, 9, 192, 131, 211, 405, 11, 5, 128, 220, 21, 313, 23, 8, 118, 99, 606
Offset: 0

Views

Author

Jeff Burch, Paul Simon (paulsimn(AT)microtec.net)

Keywords

Comments

See A176341 for a variant counting positions starting with 0, and A232013 for a sequence based on iterations of A176341. - M. F. Hasler, Nov 16 2013

Examples

			a(10) = 50 because the first "10" in the decimal expansion of Pi occurs at digits 50 and 51: 31415926535897932384626433832795028841971693993751058209749445923...
		

Crossrefs

Cf. A000796 (decimal expansion of Pi).
Cf. A080597 (terms from the decimal expansion of Pi which include every combination of n digits as consecutive subsequences).
Cf. A032510 (last string seen when scanning the decimal expansion of Pi until all n-digit strings have been seen).
Cf. A064467 (primes in Pi).

Programs

  • Mathematica
    p = ToString[FromDigits[RealDigits[N[Pi, 10^4]][[1]]]]; Do[Print[StringPosition[p, ToString[n]][[1]][[1]]], {n, 1, 100}]
    With[{pi=RealDigits[Pi,10,1000][[1]]},Transpose[Flatten[Table[ SequencePosition[ pi,IntegerDigits[n],1],{n,0,70}],1]][[1]]] (* The program uses the SequencePosition function from Mathematica version 10 *) (* Harvey P. Dale, Dec 01 2015 *)
  • PARI
    A032445(n)=my(L=#Str(n)); n=Mod(n, 10^L); for(k=L-1, 9e9, Pi\.1^k-n||return(k+2-L)) \\ Make sure to use sufficient realprecision, e.g. via \p999. - M. F. Hasler, Nov 16 2013

Formula

a(n) = A176341(n)+1. - M. F. Hasler, Nov 16 2013

Extensions

More terms from Simon Plouffe. Corrected by Michael Esposito and Michelle Vella (michael_esposito(AT)oz.sas.com).
More terms from Robert G. Wilson v, Oct 04 2001