cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032448 Smallest prime == -1 modulo prime(n).

Original entry on oeis.org

3, 2, 19, 13, 43, 103, 67, 37, 137, 173, 61, 73, 163, 257, 281, 211, 353, 487, 401, 283, 1021, 157, 331, 1423, 193, 1009, 617, 641, 653, 677, 761, 523, 547, 277, 1489, 1811, 313, 977, 1669, 691, 1789, 1447, 4201, 1543, 787, 397, 421, 1783, 907, 457
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 25 2003

Keywords

Comments

It appears that a(n) <= prime(n)^2-1, where prime(n) = A000040(n) is the n-th prime; see A035095 for a related conjecture. If correct, this implies A006530(a(n)+1)=prime(n), which in turn implies that there are no duplicated values in the sequence.

Crossrefs

Programs

  • Haskell
    a032448 n = head [q | q <- a000040_list, let p = a000040 n,
                          q `mod` p == p - 1]
    -- Reinhard Zumkeller, Aug 08 2013
  • Mathematica
    f[n_] := Block[{p = Prime@ n}, r = p - 1; While[ !PrimeQ@ r, r += p]; r]; Array[f, 50] (* Robert G. Wilson v, Jun 20 2014 *)
  • PARI
    a(n) = {prn = prime(n); p = 2; while(p % prn != prn - 1, p = nextprime(p+1)); p;} \\ Michel Marcus, Aug 04 2013
    

Extensions

Edited by Franklin T. Adams-Watters, Jun 21 2010