A032524 Arrange digits of primes in ascending order (omitting any that contain 0's), sort list, remove duplicates.
2, 3, 5, 7, 11, 13, 14, 16, 17, 19, 23, 29, 34, 35, 37, 38, 47, 59, 67, 79, 89, 112, 113, 115, 118, 119, 124, 125, 127, 128, 133, 134, 136, 137, 139, 145, 146, 149, 157, 166, 167, 169, 179, 188, 199, 223, 227, 229, 233, 235, 236, 238, 239, 257, 269, 277, 278, 289, 299, 334, 335, 337, 338, 344, 346
Offset: 1
Examples
From _Michael De Vlieger_, Jul 14 2015: (Start) 16 is a term because it is the result of sorting the digits of prime 61 in ascending order, and 61 contains no zeros. 49 is not a term since neither 49 nor 94 are prime, and the prime 409 contains a zero. 133 is a term because while 133 itself is composite, both 313 and 331 are prime and contain no zeros. (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Sort@ DeleteDuplicates[FromDigits@ Sort@ IntegerDigits@ # & /@ Select[Prime@ Range@ PrimePi[10^3], Last@ DigitCount@ # == 0 &]] (* Michael De Vlieger, Jul 14 2015 *)
Extensions
More terms from Erich Friedman
Corrected and extended by Michael De Vlieger, Jul 14 2015