A032734 All 81 combinations of prefixing and following a(n) by a single digit are nonprime.
2437, 5620, 7358, 11111, 13308, 13332, 13650, 14612, 19737, 19817, 24217, 25213, 26302, 27971, 28472, 28838, 29289, 29542, 29650, 31328, 33027, 33170, 35914, 35970, 36186, 37977, 38327, 39127, 39608, 40078, 41165, 41528, 42422, 43277, 44657, 45649, 47172, 47382
Offset: 1
Examples
2437 prefixed and followed with a pair of digits from (1,2,3,4,5,6,7,8,9) never yields a prime, e.g., '9'2437'1' = 7 * 37 * 43 * 83.
Links
Programs
-
Maple
isA032734 := proc(n) for k from 1 to 9 do for k2 from 1 to 9 do dgs := [k,op(convert(n,base,10)),k2] ; dgsn := add( op(i,dgs)*10^(i-1),i=1..nops(dgs)) ; if isprime(dgsn) then return false; end if; end do: end do: return true; end proc: for n from 1 to 50000 do if isA032734(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Oct 22 2011 filter:= proc(n) local d,i,j; d:= 10^(ilog10(n)+2); not ormap(isprime,[seq(seq(d*i+10*n+j,j=[1,3,5,7,9]),i=1..9)]) end proc: select(filter,[$1..10^5]); # Robert Israel, Jul 07 2016
-
Mathematica
ok[n_] := With[{id = IntegerDigits[n]}, Select[ Flatten[ Table[ FromDigits[ Join[{j}, id, {k}]], {j, 1, 9}, {k, 1, 9}], 1], PrimeQ, 1] == {}]; A032734 = {}; n = 1; While[n < 50000, If[ok[n], Print[n]; AppendTo[A032734, n]]; n++]; A032734(* Jean-François Alcover, Nov 23 2011 *) Select[Range[50000],NoneTrue[Flatten[Table[FromDigits[Join[{x}, IntegerDigits[ #],{y}]],{x,9},{y,9}]],PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 07 2018 *)
-
PARI
is_A032734(n)=p=10^#Str(n*=10);forstep(k=n+p,n+9*p,p,nextprime(k)>k+9 || return);1 \\ M. F. Hasler, Oct 22 2011
-
Python
from sympy import isprime def ok(n): s, fdigs, edigs = str(n), "123456789", "1379" return not any(isprime(int(f+s+e)) for f in fdigs for e in edigs) print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Sep 05 2022