cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032743 Super-2 Numbers (2 * n^2 contains substring '22' in its decimal expansion).

Original entry on oeis.org

19, 31, 69, 81, 105, 106, 107, 119, 127, 131, 169, 181, 190, 219, 231, 247, 269, 281, 310, 318, 319, 331, 332, 333, 334, 335, 336, 337, 338, 339, 348, 369, 381, 419, 431, 454, 469, 481, 511, 519, 531, 558, 569, 581, 601, 619, 631, 669, 679, 681, 690, 715
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

For any term a(n), all numbers a(n)*10^k, k >= 0, are also in the sequence. Moreover, the first four terms satisfy 2*a(n)^2 == 22 (mod 100), therefore any number ending in 19, 31, 69 or 81 (possibly followed by trailing '0's) is in the sequence. - M. F. Hasler, Jul 16 2024
Conjecture: a(n) ~ n. - Charles R Greathouse IV, Dec 04 2024

References

  • C. A. Pickover, "Keys to Infinity", New York: Wiley, p. 7, 1995.

Crossrefs

Cf. A014569 (similar for d=3), A032744 - A032749 (similar for d=4, ..., 9).

Programs

  • Mathematica
    Select[Range[1000],MemberQ[Partition[IntegerDigits[2#^2],2,1],{2,2}]&] (* Harvey P. Dale, May 09 2012 *)
    Select[Range[750],SequenceCount[IntegerDigits[2#^2],{2,2}]>0&] (* Harvey P. Dale, May 13 2022 *)
  • PARI
    select( {is_A032743(n, d=2, m=10^d, r=m\9*d)=n=d*n^d; until(r>n\=10, n%m==r && return(1))}, [0..999]) \\ M. F. Hasler, Jul 16 2024
    
  • Python
    is_A032743=lambda n, d=2: str(d)*d in str(d*n**d) # M. F. Hasler, Jul 16 2024