A032758 Undulating primes (digits alternate).
2, 3, 5, 7, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 18181, 32323, 35353, 72727, 74747, 78787, 94949, 95959, 1212121, 1616161, 323232323, 383838383
Offset: 1
References
- C. A. Pickover, "Keys to Infinity", Wiley 1995, p. 159,160.
- C. A. Pickover, "Wonders of Numbers", Oxford New York 2001, Chapter 52, pp. 123-124, 316-317.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..131 (terms 1..100 from Sean A. Irvine)
- C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review
- Charles W. Trigg, Nine-digit patterned palindromic primes, Crux Mathematicorum, Vol. 7, No. 6, June - July 1981, pp. 168-170.
Programs
-
Mathematica
a[n_] := DeleteDuplicates[Take[IntegerDigits[n],{1,-1,2}]]; b[n_] := DeleteDuplicates[Take[IntegerDigits[n],{2,-1,2}]]; t={}; Do[p=Prime[n]; If[p<10, AppendTo[t,p], If[Length[a[p]] == Length[b[p]] == 1 && a[p][[1]] != b[p][[1]], AppendTo[t,p]]], {n,3*10^7}]; t (* Jayanta Basu, May 04 2013 *)
-
Python
from itertools import count, islice from sympy import isprime, primerange def agen(): # generator of terms yield from (p for p in primerange(2, 100) if p != 11) yield from (t for t in (int((A+B)*d2+A) for d2 in count(1) for A in "1379" for B in "0123456789" if A != B) if isprime(t)) print(list(islice(agen(), 51))) # Michael S. Branicky, Jun 09 2022
Extensions
Sequence corrected by Juri-Stepan Gerasimov, Jan 28 2010
Offset corrected by Arkadiusz Wesolowski, Sep 13 2011
Comments