cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032937 Numbers k whose base-2 representation Sum_{i=0..m} d(i)*2^(m-i) has d(i)=0 for all odd i, excluding 0. Here m is the position of the leading bit of k.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 16, 17, 20, 21, 32, 34, 40, 42, 64, 65, 68, 69, 80, 81, 84, 85, 128, 130, 136, 138, 160, 162, 168, 170, 256, 257, 260, 261, 272, 273, 276, 277, 320, 321, 324, 325, 336, 337, 340, 341, 512, 514, 520, 522, 544, 546
Offset: 1

Views

Author

Keywords

Comments

Essentially the same as A126684. - R. J. Mathar, Jun 15 2008
A126684 is the primary entry for this sequence. - Franklin T. Adams-Watters, Aug 30 2014

Crossrefs

Programs

  • Mathematica
    Join[{1},Select[Range[0,600],Union[Take[IntegerDigits[#,2],{2,-1,2}]]=={0}&]] (* Harvey P. Dale, Sep 17 2023 *)
  • Python
    from gmpy2 import digits
    def A032937(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x):
            s = digits(x,4)
            for i in range(l:=len(s)):
                if s[i]>'1':
                    break
            else:
                return int(s,2)
            return int(s[:i]+'1'*(l-i),2)
        def f(x): return n+x-g(x)-g(x>>1)
        return bisection(f,n,n) # Chai Wah Wu, Oct 29 2024