cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033032 Numbers all of whose base 6 digits are odd.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 19, 21, 23, 31, 33, 35, 43, 45, 47, 55, 57, 59, 67, 69, 71, 115, 117, 119, 127, 129, 131, 139, 141, 143, 187, 189, 191, 199, 201, 203, 211, 213, 215, 259, 261, 263, 271, 273, 275, 283, 285, 287, 331, 333, 335, 343
Offset: 1

Views

Author

Keywords

Programs

  • Maple
    g:= proc(t,d) local L;
        L:= convert(3^d+t,base,3);
        add((2*L[i]+1)*6^(i-1),i=1..d);
    end proc:
    seq(seq(g(t,d),t=0..3^d-1),d=1..4); # Robert Israel, Aug 16 2018
  • Mathematica
    Table[FromDigits[#,6]&/@Tuples[{1,3,5},n],{n,4}]//Flatten (* Harvey P. Dale, Dec 24 2022 *)
  • PARI
    isok(n) = (n) && (#select(x->((x%2)==0), digits(n, 6)) == 0); \\ Michel Marcus, Aug 17 2018

Formula

If (3^d-1)/2 <= n < (3^(d+1)-1)/2, then a(n+3^d) = a(n) + 6^n, a(n+2*3^d) = a(n) + 2*6^n, and a(n+3^(d+1)) = a(n) + 5*6^n. - Robert Israel, Aug 16 2018