cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A351894 Numbers that contain only odd digits in their factorial-base representation.

Original entry on oeis.org

1, 3, 9, 21, 33, 45, 81, 93, 153, 165, 201, 213, 393, 405, 441, 453, 633, 645, 681, 693, 873, 885, 921, 933, 1113, 1125, 1161, 1173, 1353, 1365, 1401, 1413, 2313, 2325, 2361, 2373, 2553, 2565, 2601, 2613, 2793, 2805, 2841, 2853, 3753, 3765, 3801, 3813, 3993, 4005
Offset: 1

Views

Author

Amiram Eldar, Feb 24 2022

Keywords

Comments

All the terms above 1 are odd multiples of 3.

Examples

			3 is a term since its factorial-base presentation, 11, has only odd digits.
21 is a term since its factorial-base presentation, 311, has only odd digits.
		

Crossrefs

Subsequence: A007489
Similar sequences: A003462 \ {0} (ternary), A014261 (decimal), A032911 (base 4), A032912 (base 5), A033032 (base 6), A033033 (base 7), A033034 (base 8), A033035 (base 9), A033036 (base 11), A033037 (base 12), A033038 (base 13), A033039 (base 14), A033040 (base 15), A033041 (base 16), A126646 (binary).

Programs

  • Mathematica
    max = 7; fctBaseDigits[n_] := IntegerDigits[n, MixedRadix[Range[max, 2, -1]]]; Select[Range[1, max!, 2], AllTrue[fctBaseDigits[#], OddQ] &]

A056760 Integers with exactly 2 prime divisors such that the cube of the number of divisors exceeds the number.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 36, 38, 39, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 68, 72, 75, 76, 80, 88, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 124, 135, 136, 144, 147, 148, 152, 153, 160, 162, 164, 171, 172
Offset: 1

Views

Author

Labos Elemer, Aug 16 2000

Keywords

Comments

Numbers with 8 prime divisors also occur among cases satisfying relation d^3>n.
Prime divisors are counted without multiplicity. - Harvey P. Dale, May 14 2012

Examples

			The sequence is finite and almost surely complete. Between 270000 and 17000000 no more cases were found. The last 3 entries are: 165888, 186624, 248832. E.g. k = 1024*343 = 248832, with 66 divisors and d^3 = 287496 > 248832.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[180],PrimeNu[#]==2&&DivisorSigma[0,#]^3>#&] (* Harvey P. Dale, May 14 2012 *)

Formula

Integers k = (p^w)*(q^u) such that d(k)^3 > k, where d(k) = A000005(k).

A363242 Numbers whose primorial-base representation contains only odd digits.

Original entry on oeis.org

1, 3, 9, 21, 39, 51, 99, 111, 159, 171, 249, 261, 309, 321, 369, 381, 669, 681, 729, 741, 789, 801, 1089, 1101, 1149, 1161, 1209, 1221, 1509, 1521, 1569, 1581, 1629, 1641, 1929, 1941, 1989, 2001, 2049, 2061, 2559, 2571, 2619, 2631, 2679, 2691, 2979, 2991, 3039
Offset: 1

Views

Author

Amiram Eldar, May 23 2023

Keywords

Comments

All the terms above 1 are odd multiples of 3.
The partial sums of the primorials (A143293) are terms, since the primorial-base representation of A143293(n) is n+1 1's.

Examples

			3 is a term since its primorial-base presentation, 11, has only odd digits.
21 is a term since its primorial-base presentation, 311, has only odd digits.
		

Crossrefs

Subsequence: A143293.
Similar sequences: A003462 \ {0} (ternary), A014261 (decimal), A032911 (base 4), A032912 (base 5), A033032 (base 6), A033033 (base 7), A033034 (base 8), A033035 (base 9), A033036 (base 11), A033037 (base 12), A033038 (base 13), A033039 (base 14), A033040 (base 15), A033041 (base 16), A126646 (binary), A351894 (factorial base).

Programs

  • Mathematica
    With[{max = 5}, bases = Prime@ Range[max, 1, -1]; nmax = Times @@ bases - 1; prmBaseDigits[n_] := IntegerDigits[n, MixedRadix[bases]]; Select[Range[1, nmax, 2], AllTrue[prmBaseDigits[#], OddQ] &]]
  • PARI
    is(n) = {my(p = 2); if(n < 1, return(0)); while(n > 0, if((n%p)%2 == 0, return(0)); n \= p; p = nextprime(p+1)); return(1);}
Showing 1-3 of 3 results.