cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033049 Sums of distinct powers of 13.

Original entry on oeis.org

0, 1, 13, 14, 169, 170, 182, 183, 2197, 2198, 2210, 2211, 2366, 2367, 2379, 2380, 28561, 28562, 28574, 28575, 28730, 28731, 28743, 28744, 30758, 30759, 30771, 30772, 30927, 30928, 30940, 30941, 371293, 371294, 371306, 371307, 371462
Offset: 0

Views

Author

Keywords

Comments

Numbers without any base-13 digits greater than 1.
a(n) modulo 2 is the Prouhet-Thue-Morse sequence A010060. - Philippe Deléham, Oct 17 2011

Crossrefs

Row 12 of array A104257.

Programs

  • Mathematica
    With[{k = 13}, Map[FromDigits[#, k] &, Tuples[{0, 1}, 6]]] (* Michael De Vlieger, Oct 28 2022 *)
  • PARI
    A033049(n,b=13)=subst(Pol(binary(n)),'x,b) \\ M. F. Hasler, Feb 01 2016

Formula

a(n) = Sum_{i=0..m} d(i)*13^i, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
a(n) = A097259(n)/12.
a(2n) = 13*a(n), a(2n+1) = a(2n)+1.
a(n) = Sum_{k>=0} A030308(n,k)*13^k. - Philippe Deléham, Oct 17 2011
G.f.: (1/(1 - x))*Sum_{k>=0} 13^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017

Extensions

Extended by Ray Chandler, Aug 03 2004