cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033168 Longest arithmetic progression of primes with difference 210 and minimal initial term.

Original entry on oeis.org

199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089
Offset: 0

Views

Author

Manuel Valdivia, Apr 22 1998

Keywords

Comments

Since 210 == 1 (mod 11), a progression of primes with difference 210 can't have more than ten terms because there is exactly one multiple of 11 within each run of eleven consecutive terms. For example, 2089 + 210 = 2299 = 11^2 * 19. - Alonso del Arte, Dec 22 2017, edited by M. F. Hasler, Jan 02 2020
After 199, the next prime which starts a CPAP-10 with common gap 210 is 243051733. See A094220 for further starting points. - M. F. Hasler, Jan 02 2020

References

  • Paul Glendinning, Math in Minutes: 200 Key Concepts Explained in an Instant. New York, London: Quercus (2013): pp. 316-317.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 143.

Crossrefs

Programs

  • Mathematica
    199 + 210*Range[0, 9] (* Paolo Xausa, Sep 14 2024 *)
  • PARI
    forprime(p=1,,for(i=1,9,isprime(p+i*210)||next(2)); return([p+d|d<-[0..9]*210])) \\ M. F. Hasler, Jan 02 2020

Formula

a(n) = a(0) + n*210 for 0 <= n <= 9. - M. F. Hasler, Jan 02 2020