A033181 Absolute Euler pseudoprimes: odd composite numbers n such that a^((n-1)/2) == +-1 (mod n) for every a coprime to n.
1729, 2465, 15841, 41041, 46657, 75361, 162401, 172081, 399001, 449065, 488881, 530881, 656601, 670033, 838201, 997633, 1050985, 1615681, 1773289, 1857241, 2113921, 2433601, 2455921, 2704801, 3057601, 3224065, 3581761, 3664585, 3828001, 4463641, 4903921
Offset: 1
Keywords
Links
- Daniel Lignon and Dana Jacobsen, Table of n, a(n) for n = 1..10000 (first 124 terms from Daniel Lignon)
- Lorenzo Di Biagio, Euler Pseudoprimes for Half of the Bases, Integers, Vol. 12, No. 6 (2012), pp. 1231-1237, arXiv preprint, arXiv:1109.3596 [math.NT] (2011).
- Math Help Forum, how many absolute euler pseudoprimes less than a million, Sep 2009.
- Louis Monier, Evaluation and comparison of two efficient primality testing algorithms, Theoretical Computer Science, Vol. 11 (1980), pp. 97-108.
- Index entries for sequences related to pseudoprimes
Programs
-
Maple
filter:= proc(n) local q; if isprime(n) then return false fi; if 2 &^ (n-1) mod n <> 1 then return false fi; if not numtheory:-issqrfree(n) then return false fi; for q in numtheory:-factorset(n) do if (n-1)/2 mod (q-1) <> 0 then return false fi od: true; end proc: select(filter, [seq(i,i=3..10^7,2)]); # Robert Israel, Nov 24 2015
-
Mathematica
absEulerpspQ[n_Integer?PrimeQ]:=False; absEulerpspQ[n_Integer?EvenQ]:=False; absEulerpspQ[n_Integer?OddQ]:=Module[{a=2}, While[a
Daniel Lignon, Sep 09 2015 *) aQ[n_] := Module[{f = FactorInteger[n], p},p=f[[;;,1]]; Length[p] > 1 && Max[f[[;;,2]]]==1 && AllTrue[p, Divisible[(n-1)/2, #-1] &]];Select[Range[3, 2*10^5], aQ] (* Amiram Eldar, Nov 20 2019 *) -
Perl
use ntheory ":all"; my $n; foroddcomposites { say if is_carmichael($) && vecall { (($n-1)>>1) % ($-1) == 0 } factor($n=$); } 1e6; # _Dana Jacobsen, Dec 27 2015
Formula
a(n) == 1 (mod 4). - Thomas Ordowski, May 02 2019
Extensions
"Absolute Euler pseudoprimes" added to name by Daniel Lignon, Sep 09 2015
Definition edited by Thomas Ordowski, Apr 29 2019
Comments