cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033190 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(Fibonacci(k)+1,2).

Original entry on oeis.org

0, 1, 3, 9, 28, 90, 297, 1001, 3431, 11917, 41820, 147918, 526309, 1881009, 6744843, 24244145, 87300092, 314765506, 1135980801, 4102551897, 14823628015, 53581222773, 193724727804, 700551945014, 2533702591613, 9164618329825, 33151607475987, 119927166988761
Offset: 0

Views

Author

Keywords

Comments

Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 1, s(2n) = 3. - Herbert Kociemba, Jun 14 2004

Programs

  • Maple
    A033190 := proc(n)
        add(binomial(n,k)*binomial(combinat[fibonacci](k)+1,2),k=0..n) ;
    end proc: # R. J. Mathar, Feb 18 2016
  • Mathematica
    LinearRecurrence[{8,-21,20,-5},{0,1,3,9,28},30] (* Harvey P. Dale, Jan 24 2019 *)

Formula

G.f.: (-x^4+6x^3-5x^2+x)/((1-3x+x^2)*(1-5x+5x^2)).
From Herbert Kociemba, Jun 14 2004: (Start)
a(n) = (1/5)*Sum_{r=1..9} sin(r*Pi/10)*sin(3*r*Pi/10)*(2*cos(r*Pi/10))^(2*n), n >= 1.
a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4), n >= 5. (End)
From Greg Dresden, Jan 24 2021: (Start)
a(2n) = (5*Fibonacci(4*n) + (5^n)*Lucas(2*n))/10 for n > 0.
a(2n+1) = (Fibonacci(4*n+2) + (5^n)*Fibonacci(2*n+1))/2 for n >= 0.
(End)