A033207 Primes of the form x^2 + 7*y^2.
7, 11, 23, 29, 37, 43, 53, 67, 71, 79, 107, 109, 113, 127, 137, 149, 151, 163, 179, 191, 193, 197, 211, 233, 239, 263, 277, 281, 317, 331, 337, 347, 359, 373, 379, 389, 401, 421, 431, 443, 449, 457, 463, 487, 491
Offset: 1
References
- David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Sushma Palimar and B. R. Shankar, Mersenne Primes in Real Quadratic Fields, Journal of Integer Sequences, Vol. 15 (2012), #12.5.6.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Mathematica
QuadPrimes2[1, 0, 7, 10000] (* see A106856 *)
-
PARI
is(n)=kronecker(n,7)>=0 && isprime(n) && n>2 \\ Charles R Greathouse IV, Nov 19 2012
Formula
Primes congruent to {1, 7, 9, 11, 15, 23, 25} (mod 28). - T. D. Noe, Apr 29 2008
Comments