cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A002344 Numbers x such that p = x^2 + 7y^2, with prime p = A033207(n).

Original entry on oeis.org

0, 2, 4, 1, 3, 6, 5, 2, 8, 4, 10, 9, 1, 8, 5, 11, 12, 10, 2, 4, 9, 13, 6, 11, 8, 16, 5, 13, 17, 18, 15, 2, 4, 11, 6, 19, 17, 13, 16, 10, 1, 3, 20, 12, 22, 18, 17, 22, 23, 11, 2, 16, 19, 13, 8
Offset: 1

Views

Author

Keywords

References

  • A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002345.

A002345 Numbers y such that p = x^2 + 7y^2, with prime p = A033207(n).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 3, 1, 3, 1, 2, 4, 3, 4, 2, 1, 3, 5, 5, 4, 2, 5, 4, 5, 1, 6, 4, 2, 1, 4, 7, 7, 6, 7, 2, 4, 6, 5, 7, 8, 8, 3, 7, 1, 5, 6, 3, 2, 8, 9, 7, 6, 8, 9, 4, 2, 5, 8, 1, 10, 10, 3, 7, 5, 2, 8, 10, 9, 7
Offset: 1

Views

Author

Keywords

References

  • A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002344.

A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.

Original entry on oeis.org

2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1

Views

Author

T. D. Noe, May 09 2005, Apr 28 2008

Keywords

Comments

Discriminant=-7. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac.
Consider sequences of primes produced by forms with -100
The Mathematica function QuadPrimes2 is useful for finding the primes less than "lim" represented by the positive definite quadratic form ax^2 + bxy + cy^2 for any a, b and c satisfying a>0, c>0, and discriminant d<0. It does this by examining all x>=0 and y>=0 in the ellipse ax^2 + bxy + cy^2 <= lim. To find the primes generated by positive and negative x and y, compute the union of QuadPrimes2[a,b,c,lim] and QuadPrimes2[a,-b,c,lim]. - T. D. Noe, Sep 01 2009
For other programs see the "Binary Quadratic Forms and OEIS" link.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

Crossrefs

Discriminants in the range -3 to -100: A007645 (d=-3), A002313 (d=-4), A045373, A106856 (d=-7), A033203 (d=-8), A056874, A106857 (d=-11), A002476 (d=-12), A033212, A106858-A106861 (d=-15), A002144, A002313 (d=-16), A106862-A106863 (d=-19), A033205, A106864-A106865 (d=-20), A106866-A106869 (d=-23), A033199, A084865 (d=-24), A002476, A106870 (d=-27), A033207 (d=-28), A033221, A106871-A106874 (d=-31), A007519, A007520, A106875-A106876 (d=-32), A106877-A106881 (d=-35), A040117, A068228, A106882 (d=-36), A033227, A106883-A106888 (d=-39), A033201, A106889 (d=-40), A106890-A106891 (d=-43), A033209, A106282, A106892-A106893 (d=-44), A033232, A106894-A106900 (d=-47), A068229 (d=-48), A106901-A106904 (d=-51), A033210, A106905-A106906 (d=-52), A033235, A106907-A106913 (d=-55), A033211, A106914-A106917 (d=-56), A106918-A106922 (d=-59), A033212, A106859 (d=-60), A106923-A106930 (d=-63), A007521, A106931 (d=-64), A106932-A106933 (d=-67), A033213, A106934-A106938 (d=-68), A033246, A106939-A106948 (d=-71), A106949-A106950 (d=-72), A033212, A106951-A106952 (d=-75), A033214, A106953-A106955 (d=-76), A033251, A106956-A106962 (d=-79), A047650, A106963-A106965 (d=-80), A106966-A106970 (d=-83), A033215, A102271, A102273, A106971-A106974 (d=-84), A033256, A106975-A106983 (d=-87), A033216, A106984 (d=-88), A106985-A106989 (d=-91), A033217 (d=-92), A033206, A106990-A107001 (d=-95), A107002-A107008 (d=-96), A107009-A107013 (d=-99).
Other collections of quadratic forms: A139643, A139827.
For a more comprehensive list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Cf. also A242660.

Programs

  • Mathematica
    QuadPrimes2[a_, b_, c_, lmt_] := Module[{p, d, lst = {}, xMax, yMax}, d = b^2 - 4a*c; If[a > 0 && c > 0 && d < 0, xMax = Sqrt[lmt/a]*(1+Abs[b]/Floor[Sqrt[-d]])]; Do[ If[ 4c*lmt + d*x^2 >= 0, yMax = ((-b)*x + Sqrt[4c*lmt + d*x^2])/(2c), yMax = 0 ]; Do[p = a*x^2 + b*x*y + c*y^2; If[ PrimeQ[ p]  && p <= lmt && !MemberQ[ lst, p], AppendTo[ lst, p]], {y, 0, yMax}], {x, 0, xMax}]; Sort[ lst]];
    QuadPrimes2[1, 1, 2, 1000]
    (This is a corrected version of the old, incorrect, program QuadPrimes. - N. J. A. Sloane, Jun 15 2014)
    max = 1000; Table[yy = {y, 1, Floor[Sqrt[8 max - 7 x^2]/4 - x/4]}; Table[ x^2 + x y + 2 y^2, yy // Evaluate], {x, 0, Floor[Sqrt[max]]}] // Flatten // Union // Select[#, PrimeQ]& (* Jean-François Alcover, Oct 04 2018 *)
  • PARI
    list(lim)=my(q=Qfb(1,1,2), v=List([2])); forprime(p=2, lim, if(vecmin(qfbsolve(q, p))>0, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Aug 05 2016

Extensions

Removed old Mathematica programs - T. D. Noe, Sep 09 2009
Edited (pointed out error in QuadPrimes, added new version of program, checked and extended b-file). - N. J. A. Sloane, Jun 06 2014

A020670 Numbers of form x^2 + 7y^2.

Original entry on oeis.org

0, 1, 4, 7, 8, 9, 11, 16, 23, 25, 28, 29, 32, 36, 37, 43, 44, 49, 53, 56, 63, 64, 67, 71, 72, 77, 79, 81, 88, 92, 99, 100, 107, 109, 112, 113, 116, 121, 127, 128, 137, 144, 148, 149, 151, 161, 163, 169, 172, 175, 176, 179, 184, 191, 193, 196, 197, 200, 203, 207, 211, 212, 224
Offset: 1

Keywords

Crossrefs

Cf. A033207.

Programs

  • Magma
    [n: n in [0..230] | NormEquation(7, n) eq true]; // Vincenzo Librandi, Aug 31 2016
  • Mathematica
    lim=250; k=7; Union@Flatten@Table[x^2 + k y^2, {y, 0, Sqrt[lim/k]}, {x, 0, Sqrt[lim-k y^2]}] (* Vincenzo Librandi, Aug 31 2016 *)
  • PARI
    is(n)=my(f=factor(n));for(i=1,#f[,1],if(kronecker(f[i,1],7)<0 && f[i,2]%2, return(0))); n%4!=2 \\ Charles R Greathouse IV, Nov 18 2012
    

A033211 Primes of form x^2 + 14*y^2.

Original entry on oeis.org

23, 127, 137, 151, 233, 239, 281, 359, 431, 449, 487, 673, 743, 751, 911, 953, 967, 977, 1033, 1087, 1103, 1129, 1303, 1409, 1423, 1439, 1481, 1663, 1759, 1871, 1873, 2017, 2039, 2081, 2129, 2137, 2207
Offset: 1

Keywords

References

  • Cohn, Harvey. A classical invitation to algebraic numbers and class fields. With two appendices by Olga Taussky: "Artin's 1932 Göttingen lectures on class field theory" and "Connections between algebraic number theory and integral matrices". Universitext. Springer-Verlag, New York-Heidelberg, 1978. xiii+328 pp. ISBN: 0-387-90345-3; MR0506156 (80c:12001). See p. 158.
  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989. See pp. ix, 115, etc.

Crossrefs

Subsequence of A033207. Primes in A244037.

Programs

  • Mathematica
    QuadPrimes2[1, 0, 14, 10000] (* see A106856 *)

A247979 Numbers of the form x^2 + 7y^2 with x, y integers, or x^2/4 + 7y^2/4 with x, y odd integers.

Original entry on oeis.org

0, 1, 2, 4, 7, 8, 9, 11, 14, 16, 18, 21, 22, 23, 25, 28, 29, 32, 36, 37, 43, 44, 46, 49, 50, 53, 56, 58, 63, 64, 67, 71, 72, 74, 77, 79, 81, 86, 88, 92, 98, 99, 100, 106, 107, 109, 112, 113, 116, 121, 126, 127, 128, 134, 137, 142, 144, 148, 149, 151, 154, 158, 161, 162, 163, 169, 172
Offset: 1

Author

Alonso del Arte, Sep 28 2014

Keywords

Comments

Norms of numbers in O_Q(sqrt(-7)).
A033207 and A045386 are subsets of this sequence. - Colin Barker, Sep 29 2014

Examples

			1/4 + 7/4 = 2, so 2 is in the sequence. (This also means 2 is composite in O_Q(sqrt(-7))).
2^2 + 7 * 0^2 = 4, so 4 is in the sequence.
There is no way to express 5 as x^2 + 7y^2, nor as x^2/4 + 7y^2/4 if x and y are constrained to odd integers, hence 5 is not in the sequence. (This also means 5 is prime in O_Q(sqrt(-7)) and its norm is 25).
		

Crossrefs

Showing 1-6 of 6 results.