A033274 Primes that do not contain any other prime as a proper substring.
2, 3, 5, 7, 11, 19, 41, 61, 89, 101, 109, 149, 181, 401, 409, 449, 491, 499, 601, 691, 809, 881, 991, 1009, 1049, 1069, 1481, 1609, 1669, 1699, 1801, 4001, 4049, 4481, 4649, 4801, 4909, 4969, 6091, 6469, 6481, 6869, 6949, 8009, 8069, 8081, 8609, 8669, 8681
Offset: 1
Examples
149 is a term as 1, 4, 9, 14, 49 are all nonprimes. 199 is not a term as 19 is a prime.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Zak Seidov)
Programs
-
Haskell
import Data.List (elemIndices) a033274 n = a033274_list !! (n-1) a033274_list = map (a000040 . (+ 1)) $ elemIndices 0 a079066_list -- Reinhard Zumkeller, Jul 19 2011
-
Mathematica
f[n_] := Block[ {id = IntegerDigits@n}, len = Length@ id - 1; Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[ id, k, 1], {k, len}], 1]], True] + 1]; Select[ Prime@ Range@ 1100, f@# == 1 &] (* Robert G. Wilson v, Aug 01 2010 *) Select[Prime[Range[1100]],NoneTrue[Flatten[Table[FromDigits/@Partition[IntegerDigits[#],d,1],{d,IntegerLength[#]-1}]],PrimeQ]&] (* Harvey P. Dale, Apr 19 2025 *)
-
Python
from sympy import isprime def ok(n): if n in {2, 3, 5, 7}: return True s = str(n) if set(s) & {"2", "3", "5", "7"} or not isprime(n): return False ss2 = set(s[i:i+l] for i in range(len(s)-1) for l in range(2, len(s))) return not any(isprime(int(ss)) for ss in ss2) print([k for k in range(9000) if ok(k)]) # Michael S. Branicky, Jun 29 2022
Extensions
Edited by N. J. A. Sloane at the suggestion of Luca Colucci, Apr 03 2008
Comments