cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033291 A Connell-like sequence: take the first multiple of 1, the next 2 multiples of 2, the next 3 multiples of 3, etc.

Original entry on oeis.org

1, 2, 4, 6, 9, 12, 16, 20, 24, 28, 30, 35, 40, 45, 50, 54, 60, 66, 72, 78, 84, 91, 98, 105, 112, 119, 126, 133, 136, 144, 152, 160, 168, 176, 184, 192, 198, 207, 216, 225, 234, 243, 252, 261, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 374, 385, 396, 407, 418, 429, 440, 451, 462
Offset: 1

Views

Author

Keywords

Comments

Row sums are 0, 1, 6, 27, 88, 200, ... with g.f. -x*(1 + 4*x + 16*x^2 + 37*x^3 + 39*x^4 + 54*x^5 + 39*x^6 + 17*x^7 + 8*x^8 + x^9) / ( (1 + x + x^2)^3*(x-1)^5 ). - R. J. Mathar, Aug 10 2017

Examples

			Triangle begins
   1;
   2,  4;
   6,  9,  12;
  16, 20,  24,  28;
  30, 35,  40,  45,  50;
  54, 60,  66,  72,  78,  84;
  91, 98, 105, 112, 119, 126, 133; ...
		

Crossrefs

Cf. A192735 (left edge), A192736 (right edge).

Programs

  • Haskell
    a033291 n k = a033291_tabl !! (n-1) !! (k-1)
    a033291_row n = a033291_tabl !! (n-1)
    a033291_tabl = f 1 [1..] where
       f k xs = ys : f (k+1) (dropWhile (<= last ys) xs) where
         ys  = take k $ filter ((== 0) . (`mod` k)) xs
    a192735 n = head $ a033291_tabl !! (n-1)
    a192736 n = last $ a033291_tabl !! (n-1)
    -- Reinhard Zumkeller, Jan 18 2012, Jul 08 2011
    
  • Maple
    A033291 := proc(n,k)
        A192735(n)+(k-1)*n ;
    end proc:
    seq(seq(A033291(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Aug 10 2017
  • Mathematica
    Flatten[ Table[ n*(Floor[ (n-1)^2/3] + k), {n, 1, 12}, {k, 1, n}]] (* Jean-François Alcover, Sep 30 2011 *)
  • PARI
    a(n)=my(q=(sqrtint(8*n-7)+1)\2); q*n-q*(q+1)\6*q \\ Charles R Greathouse IV, Jan 06 2016

Formula

a(n) = q(n)*n - q(n)*floor(q(n)*(q(n)+1)/6) with q(n) = ceiling((1/2)*(-1 + sqrt(1+8*(n)))).

Extensions

Corrected and formula added by Johannes W. Meijer, Oct 07 2010