A033291 A Connell-like sequence: take the first multiple of 1, the next 2 multiples of 2, the next 3 multiples of 3, etc.
1, 2, 4, 6, 9, 12, 16, 20, 24, 28, 30, 35, 40, 45, 50, 54, 60, 66, 72, 78, 84, 91, 98, 105, 112, 119, 126, 133, 136, 144, 152, 160, 168, 176, 184, 192, 198, 207, 216, 225, 234, 243, 252, 261, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 374, 385, 396, 407, 418, 429, 440, 451, 462
Offset: 1
Examples
Triangle begins 1; 2, 4; 6, 9, 12; 16, 20, 24, 28; 30, 35, 40, 45, 50; 54, 60, 66, 72, 78, 84; 91, 98, 105, 112, 119, 126, 133; ...
Links
- Reinhard Zumkeller, Rows n = 1..100, flattened
- Gary E. Stevens, A Connell-Like Sequence, J. Integer Sequences, 1 (1998), #98.1.4.
Programs
-
Haskell
a033291 n k = a033291_tabl !! (n-1) !! (k-1) a033291_row n = a033291_tabl !! (n-1) a033291_tabl = f 1 [1..] where f k xs = ys : f (k+1) (dropWhile (<= last ys) xs) where ys = take k $ filter ((== 0) . (`mod` k)) xs a192735 n = head $ a033291_tabl !! (n-1) a192736 n = last $ a033291_tabl !! (n-1) -- Reinhard Zumkeller, Jan 18 2012, Jul 08 2011
-
Maple
A033291 := proc(n,k) A192735(n)+(k-1)*n ; end proc: seq(seq(A033291(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Aug 10 2017
-
Mathematica
Flatten[ Table[ n*(Floor[ (n-1)^2/3] + k), {n, 1, 12}, {k, 1, n}]] (* Jean-François Alcover, Sep 30 2011 *)
-
PARI
a(n)=my(q=(sqrtint(8*n-7)+1)\2); q*n-q*(q+1)\6*q \\ Charles R Greathouse IV, Jan 06 2016
Formula
a(n) = q(n)*n - q(n)*floor(q(n)*(q(n)+1)/6) with q(n) = ceiling((1/2)*(-1 + sqrt(1+8*(n)))).
Extensions
Corrected and formula added by Johannes W. Meijer, Oct 07 2010
Comments