cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A192735 Left edge of the triangle in A033291.

Original entry on oeis.org

1, 2, 6, 16, 30, 54, 91, 136, 198, 280, 374, 492, 637, 798, 990, 1216, 1462, 1746, 2071, 2420, 2814, 3256, 3726, 4248, 4825, 5434, 6102, 6832, 7598, 8430, 9331, 10272, 11286, 12376, 13510, 14724, 16021, 17366, 18798, 20320, 21894, 23562, 25327, 27148, 29070
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 08 2011

Keywords

Comments

a(n) = A087483(n-2) * n.

Crossrefs

Cf. A192736.

Programs

Formula

G.f.: x*(x^2+1)*(2*x^4+4*x^3+2*x^2+1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Mar 31 2013

A192736 Right edge of the triangle in A033291.

Original entry on oeis.org

1, 4, 12, 28, 50, 84, 133, 192, 270, 370, 484, 624, 793, 980, 1200, 1456, 1734, 2052, 2413, 2800, 3234, 3718, 4232, 4800, 5425, 6084, 6804, 7588, 8410, 9300, 10261, 11264, 12342, 13498, 14700, 15984, 17353, 18772, 20280, 21880, 23534, 25284, 27133, 29040
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 08 2011

Keywords

Comments

a(n) = A007980(n-1) * n.

Crossrefs

Cf. A192735.

Programs

Formula

G.f.: x*(2*x^5+2*x^4+6*x^3+5*x^2+2*x+1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Mar 31 2013

A045975 Take the first odd integer and multiple of 1, the next 2 even integers and multiples of 2, the next 3 odd integers and multiples of 3, the next 4 even integers and multiples of 4, ...

Original entry on oeis.org

1, 2, 4, 9, 15, 21, 24, 28, 32, 36, 45, 55, 65, 75, 85, 90, 96, 102, 108, 114, 120, 133, 147, 161, 175, 189, 203, 217, 224, 232, 240, 248, 256, 264, 272, 280, 297, 315, 333, 351, 369, 387, 405, 423, 441, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 561, 583, 605, 627, 649, 671, 693
Offset: 1

Views

Author

Fang-kuo Huang (gsyps(AT)ms17.hinet.net)

Keywords

Comments

A generalized Connell sequence.

Examples

			Triangle begins:
    1;
    2,   4;
    9,  15,  21;
   24,  28,  32,  36;
   45,  55,  65,  75,  85;
   90,  96, 102, 108, 114, 120;
  133, 147, 161, 175, 189, 203, 217;
  ...
		

Crossrefs

Seen as a triangle read by rows: cf. A204558 (row sums), A005917 (central terms), A204556 (left edge), A204557 (right edge).

Programs

  • Haskell
    a045975 n k = a045975_tabl !! (n-1) !! (k-1)
    a045975_row n = a045975_tabl !! (n-1)
    a045975_tabl = f 1 [1..] where
       f k xs = ys : f (k+1) (dropWhile (<= last ys) xs) where
         ys | even k    = take k ms
            | otherwise = take k $ filter odd ms
         ms = filter ((== 0) . (`mod` k)) xs
    -- Reinhard Zumkeller, Jan 18 2012
  • Mathematica
    first[n_?EvenQ] := (n - 1)*n^2/2; first[n_?OddQ] := n*(n^2 - 2n + 3)/2; row[n_] := (ro = {first[n]}; next = first[n] + n; While[ Length[ro] < n, If[Mod[next , 2] == Mod[n, 2], AppendTo[ro, next]]; next = next + n]; ro); Flatten[ Table[row[n], {n, 1, 11}]](* Jean-François Alcover, Jun 08 2012 *)

Extensions

More terms from James Sellers
Keyword tabl added by Reinhard Zumkeller, Jan 18 2012

A071977 Triangle in which first row is {1}; to get n-th row take first n numbers greater than last number in previous row which are relatively prime to n.

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 11, 13, 15, 17, 18, 19, 21, 22, 23, 25, 29, 31, 35, 37, 41, 43, 44, 45, 46, 47, 48, 50, 51, 53, 55, 57, 59, 61, 63, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 81, 83, 87, 89, 91, 93, 97, 99, 101, 103, 104, 105, 106, 107, 108, 109, 111, 112, 113, 114, 115
Offset: 1

Views

Author

Amarnath Murthy, Jun 18 2002

Keywords

Examples

			Triangle begins 1; 3 5; 7 8 10; 11 13 15 17; 18 19 21 22 23; 25 29 31 35 37 41; ....
		

Crossrefs

Diagonals give A071978, A071979.

Programs

  • Haskell
    a071977 n k = a071977_tabl !! (n-1) !! (k-1)
    a071977_row n = a071977_tabl !! (n-1)
    a071977_tabl = f 1 [1..] where
       f k xs = ys : f (k+1) (dropWhile (<= last ys) xs) where
         ys  = take k $ filter ((== 1) . (gcd k)) xs
    -- Reinhard Zumkeller, Jan 18 2012
  • Mathematica
    a = {1}; k = 2; Do[i = 1; While[i < n + 1, If[ GCD[k, n] == 1, a = Append[a, k]; i++ ]; k++ ], {n, 2, 12}]; a

Extensions

Edited by Robert G. Wilson v, Jun 28 2002

A128716 Triangle where the n-th row, of n terms in order, contains consecutive multiples of n. The smallest term of row n is the smallest integer greater than or equal to the largest term of row (n-1), for n >= 2.

Original entry on oeis.org

1, 2, 4, 6, 9, 12, 12, 16, 20, 24, 25, 30, 35, 40, 45, 48, 54, 60, 66, 72, 78, 84, 91, 98, 105, 112, 119, 126, 128, 136, 144, 152, 160, 168, 176, 184, 189, 198, 207, 216, 225, 234, 243, 252, 261, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 363, 374, 385, 396
Offset: 1

Views

Author

Leroy Quet, Jun 12 2007

Keywords

Comments

If we instead had the triangle where the smallest term of row n is the smallest integer strictly greater than the largest term of row (n-1), for n >= 2, then we would have sequence A033291.

Examples

			Triangle starts
    1;
    2,   4;
    6,   9,  12;
   12,  16,  20,  24;
   25,  30,  35,  40,  45;
   48,  54,  60,  66,  72,  78;
   84,  91,  98, 105, 112, 119, 126;
  128, 136, 144, 152, 160, 168, 176, 184;
  189, 198, 207, 216, 225, 234, 243, 252, 261;
		

Crossrefs

Cf. A033291.

Programs

  • Maple
    A128716 := proc(n,k) option remember ; if n = 1 then 1 ; elif k = 1 then n*ceil(A128716(n-1,n-1)/n) ; else A128716(n,k-1)+n ; fi ; end: for n from 1 to 11 do for k from 1 to n do printf("%d,",A128716(n,k)) ; od: od: # R. J. Mathar, Nov 01 2007

Formula

T(n,k+1) = T(n,k) + n for 1 <= k < n. T(n,1) = n*ceiling(T(n-1,n-1)/n) for n >= 2. - R. J. Mathar, Nov 01 2007

Extensions

More terms from R. J. Mathar, Nov 01 2007
Showing 1-5 of 5 results.