cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A204556 Left edge of the triangle A045975.

Original entry on oeis.org

1, 2, 9, 24, 45, 90, 133, 224, 297, 450, 561, 792, 949, 1274, 1485, 1920, 2193, 2754, 3097, 3800, 4221, 5082, 5589, 6624, 7225, 8450, 9153, 10584, 11397, 13050, 13981, 15872, 16929, 19074, 20265, 22680, 24013, 26714, 28197, 31200, 32841, 36162, 37969, 41624
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 18 2012

Keywords

Programs

  • Haskell
    a204556 = head . a045975_row
    
  • Magma
    [n*(2*n^2-3*n+(-1)^n*(n-3)+3)/4: n in [1..50]]; // G. C. Greubel, Jun 15 2018
  • Mathematica
    Table[n*(2*n^2 - 3*n + (-1)^n*(n - 3) + 3)/4, {n, 1, 50}] (* G. C. Greubel, Jun 15 2018 *)
  • PARI
    Vec(x*(1+x+4*x^2+12*x^3+3*x^4+3*x^5)/((1+x)^3*(x-1)^4) + O(x^99)) \\ Charles R Greathouse IV, Jun 12 2015
    
  • PARI
    for(n=1, 50, print1(n*(2*n^2-3*n+(-1)^n*(n-3)+3)/4, ", ")) \\ G. C. Greubel, Jun 15 2018
    

Formula

a(n) = A045975(n,1);
a(n) = A031940(n-1) * n for n > 1;
a(n) = A204557(n) - A045895(n).
G.f.: x*(1+x+4*x^2+12*x^3+3*x^4+3*x^5) / ((1+x)^3*(x-1)^4). - R. J. Mathar, Aug 13 2012
From Colin Barker, Jan 28 2016: (Start)
a(n) = n*(2*n^2-3*n+(-1)^n*(n-3)+3)/4.
a(n) = (n^3-n^2)/2 for n even.
a(n) = (n^3-2*n^2+3*n)/2 for n odd.
(End)

A204557 Right edge of the triangle A045975.

Original entry on oeis.org

1, 4, 21, 36, 85, 120, 217, 280, 441, 540, 781, 924, 1261, 1456, 1905, 2160, 2737, 3060, 3781, 4180, 5061, 5544, 6601, 7176, 8425, 9100, 10557, 11340, 13021, 13920, 15841, 16864, 19041, 20196, 22645, 23940, 26677, 28120, 31161, 32760, 36121, 37884, 41581
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 18 2012

Keywords

Programs

  • Haskell
    a204557 = last . a045975_row
    
  • Magma
    [n*(2*n^2+(3-(-1)^n)*n-(-1)^n-3)/4: n in [1..50]]; // G. C. Greubel, Jun 15 2018
  • Mathematica
    Table[n*(2*n^2+(3-(-1)^n)*n-(-1)^n-3)/4, {n, 1, 50}] (* G. C. Greubel, Jun 15 2018 *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,4,21,36,85,120,217},50] (* Harvey P. Dale, Feb 20 2021 *)
  • PARI
    Vec(-x*(-1-3*x-14*x^2-6*x^3-x^4+x^5)/((1+x)^3*(x-1)^4) + O(x^100)) \\ Colin Barker, Jan 28 2016
    

Formula

a(n) = A045975(n,n);
a(n) = A079326(n+1) * n;
a(n) = A204556(n) + A045895(n).
G.f.: -x*(-1-3*x-14*x^2-6*x^3-x^4+x^5) / ((1+x)^3*(x-1)^4). - R. J. Mathar, Aug 13 2012
From Colin Barker, Jan 28 2016: (Start)
a(n) = n*(2*n^2+(3-(-1)^n)*n-(-1)^n-3)/4.
a(n) = (n^3+n^2-2*n)/2 for n even.
a(n) = (n^3+2*n^2-n)/2 for n odd.
(End)

A204558 Row sums of the triangle A045975.

Original entry on oeis.org

1, 6, 45, 120, 325, 630, 1225, 2016, 3321, 4950, 7381, 10296, 14365, 19110, 25425, 32640, 41905, 52326, 65341, 79800, 97461, 116886, 140185, 165600, 195625, 228150, 266085, 306936, 354061, 404550, 462241, 523776, 593505, 667590, 750925, 839160, 937765
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 18 2012

Keywords

Comments

a(n) = sum(A045975(n,k): k = 1 .. n);
a(n) = n * (if n even then A035328(n/2) else A005817((n+1)/2)). [Reinhard Zumkeller, Jan 18 2012]

Programs

  • Haskell
    a204558 = sum . a045975_row

Formula

Conjecture: a(n) = (n^2*(-(-1)^n+n^2))/2. G.f.: -x*(x^6 +4*x^5 +31*x^4 +24*x^3 +31*x^2 +4*x +1) / ((x -1)^5*(x +1)^3). - Colin Barker, Apr 02 2013

A005917 Rhombic dodecahedral numbers: a(n) = n^4 - (n - 1)^4.

Original entry on oeis.org

1, 15, 65, 175, 369, 671, 1105, 1695, 2465, 3439, 4641, 6095, 7825, 9855, 12209, 14911, 17985, 21455, 25345, 29679, 34481, 39775, 45585, 51935, 58849, 66351, 74465, 83215, 92625, 102719, 113521, 125055, 137345, 150415, 164289, 178991
Offset: 1

Views

Author

Keywords

Comments

Final digits of a(n), i.e., a(n) mod 10, are repeated periodically with period of length 5 {1,5,5,5,9}. There is a symmetry in this list since the sum of two numbers equally distant from the ends is equal to 10 = 1 + 9 = 5 + 5 = 2*5. Last two digits of a(n), i.e., a(n) mod 100, are repeated periodically with period of length 50. - Alexander Adamchuk, Aug 11 2006
a(n) = VarScheme(n,2) in the scheme displayed in A128195. - Peter Luschny, Feb 26 2007
If Y is a 3-subset of a 2n-set X then, for n >= 2, a(n-2) is the number of 4-subsets of X intersecting Y. - Milan Janjic, Nov 18 2007
The numbers are the constant number found in magic squares of order n, where n is an odd number, see the comment in A006003. A Magic Square of side 1 is 1; 3 is 15; 5 is 65 and so on. - David Quentin Dauthier, Nov 07 2008
Two times the area of the triangle with vertices at (0,0), ((n - 1)^2, n^2), and (n^2, (n - 1)^2). - J. M. Bergot, Jun 25 2013
Bisection of A006003. - Omar E. Pol, Sep 01 2018
Construct an array M with M(0,n) = 2*n^2 + 4*n + 1 = A056220(n+1), M(n,0) = 2*n^2 + 1 = A058331(n) and M(n,n) = 2*n*(n+1) + 1 = A001844(n). Row(n) begins with all the increasing odd numbers from A058331(n) to A001844(n) and column(n) begins with all the decreasing odd numbers from A056220(n+1) to A001844(n). The sum of the terms in row(n) plus those in column(n) minus M(n,n) equals a(n+1). The first five rows of array M are [1, 7, 17, 31, 49, ...]; [3, 5, 15, 29, 47, ...]; [9, 11, 13, 27, 45, ...]; [19, 21, 23, 25, 43, ...]; [33, 35, 37, 39, 41, ...]. - J. M. Bergot, Jul 16 2013 [This contribution was moved here from A047926 by Petros Hadjicostas, Mar 08 2021.]
For n>=2, these are the primitive sides s of squares of type 2 described in A344332. - Bernard Schott, Jun 04 2021
(a(n) + 1) / 2 = A212133(n) is the number of cells in the n-th rhombic-dodecahedral polycube. - George Sicherman, Jan 21 2024

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, p. 53.
  • E. Deza and M. M. Deza, Figurate Numbers, World Scientific Publishing, 2012, pp. 123-124.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

(1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A063493, A063494, A063495, A063496.
Column k=3 of A047969.

Programs

  • Haskell
    a005917 n = a005917_list !! (n-1)
    a005917_list = map sum $ f 1 [1, 3 ..] where
       f x ws = us : f (x + 2) vs where (us, vs) = splitAt x ws
    -- Reinhard Zumkeller, Nov 13 2014
    
  • Magma
    [n^4 - (n-1)^4: n in [1..50]]; // Vincenzo Librandi, Aug 01 2011
    
  • Mathematica
    Table[n^4-(n-1)^4,{n,40}]  (* Harvey P. Dale, Apr 01 2011 *)
    #[[2]]-#[[1]]&/@Partition[Range[0,40]^4,2,1] (* More efficient than the above Mathematica program because it only has to calculate each 4th power once *) (* Harvey P. Dale, Feb 07 2015 *)
    Differences[Range[0,40]^4] (* Harvey P. Dale, Aug 11 2023 *)
  • PARI
    a(n)=n^4-(n-1)^4 \\ Charles R Greathouse IV, Jul 31 2011
    
  • Python
    A005917_list, m = [], [24, -12, 2, 1]
    for _ in range(10**2):
        A005917_list.append(m[-1])
        for i in range(3):
            m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015

Formula

a(n) = (2*n - 1)*(2*n^2 - 2*n + 1).
Sum_{i=1..n} a(i) = n^4 = A000583(n). First differences of A000583.
G.f.: x*(1+x)*(1+10*x+x^2)/(1-x)^4. - Simon Plouffe in his 1992 dissertation
More generally, g.f. for n^m - (n - 1)^m is Euler(m, x)/(1 - x)^m, where Euler(m, x) is Eulerian polynomial of degree m (cf. A008292). E.g.f.: x*(exp(y/(1 - x)) - exp(x*y/(1 - x)))/(exp(x*y/(1 - x))-x*exp(y/(1 - x))). - Vladeta Jovovic, May 08 2002
a(n) = sum of the next (2*n - 1) odd numbers; i.e., group the odd numbers so that the n-th group contains (2*n - 1) elements like this: (1), (3, 5, 7), (9, 11, 13, 15, 17), (19, 21, 23, 25, 27, 29, 31), ... E.g., a(3) = 65 because 9 + 11 + 13 + 15 + 17 = 65. - Xavier Acloque, Oct 11 2003
a(n) = 2*n - 1 + 12*Sum_{i = 1..n} (i - 1)^2. - Xavier Acloque, Oct 16 2003
a(n) = (4*binomial(n,2) + 1)*sqrt(8*binomial(n,2) + 1). - Paul Barry, Mar 14 2004
Binomial transform of [1, 14, 36, 24, 0, 0, 0, ...], if the offset is 0. - Gary W. Adamson, Dec 20 2007
Sum_{i=1..n-1}(a(i) + a(i+1)) = 8*Sum_{i=1..n}(i^3 + i) = 16*A002817(n-1) for n > 1. - Bruno Berselli, Mar 04 2011
a(n+1) = a(n) + 2*(6*n^2 + 1) = a(n) + A005914(n). - Vincenzo Librandi, Mar 16 2011
a(n) = -a(-n+1). a(n) = (1/6)*(A181475(n) - A181475(n-2)). - Bruno Berselli, Sep 26 2011
a(n) = A045975(2*n-1,n) = A204558(2*n-1)/(2*n - 1). - Reinhard Zumkeller, Jan 18 2012
a(n+1) = Sum_{k=0..2*n+1} (A176850(n,k) - A176850(n-1,k))*(2*k + 1), n >= 1. - L. Edson Jeffery, Nov 02 2012
a(n) = A005408(n-1) * A001844(n-1) = (2*(n - 1) + 1) * (2*(n - 1)*n + 1) = A000290(n-1)*12 + 2 + a(n-1). - Bruce J. Nicholson, May 17 2017
a(n) = A007588(n) + A007588(n-1) = A000292(2n-1) + A000292(2n-2) + A000292(2n-3) = A002817(2n-1) - A002817(2n-2). - Bruce J. Nicholson, Oct 22 2017
a(n) = A005898(n-1) + 6*A000330(n-1) (cf. Deza, Deza, 2012, p. 123, Section 2.6.2). - Felix Fröhlich, Oct 01 2018
a(n) = A300758(n-1) + A005408(n-1). - Bruce J. Nicholson, Apr 23 2020
G.f.: polylog(-4, x)*(1-x)/x. See the Simon Plouffe formula above (with expanded numerator), and the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021

A033291 A Connell-like sequence: take the first multiple of 1, the next 2 multiples of 2, the next 3 multiples of 3, etc.

Original entry on oeis.org

1, 2, 4, 6, 9, 12, 16, 20, 24, 28, 30, 35, 40, 45, 50, 54, 60, 66, 72, 78, 84, 91, 98, 105, 112, 119, 126, 133, 136, 144, 152, 160, 168, 176, 184, 192, 198, 207, 216, 225, 234, 243, 252, 261, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 374, 385, 396, 407, 418, 429, 440, 451, 462
Offset: 1

Views

Author

Keywords

Comments

Row sums are 0, 1, 6, 27, 88, 200, ... with g.f. -x*(1 + 4*x + 16*x^2 + 37*x^3 + 39*x^4 + 54*x^5 + 39*x^6 + 17*x^7 + 8*x^8 + x^9) / ( (1 + x + x^2)^3*(x-1)^5 ). - R. J. Mathar, Aug 10 2017

Examples

			Triangle begins
   1;
   2,  4;
   6,  9,  12;
  16, 20,  24,  28;
  30, 35,  40,  45,  50;
  54, 60,  66,  72,  78,  84;
  91, 98, 105, 112, 119, 126, 133; ...
		

Crossrefs

Cf. A192735 (left edge), A192736 (right edge).

Programs

  • Haskell
    a033291 n k = a033291_tabl !! (n-1) !! (k-1)
    a033291_row n = a033291_tabl !! (n-1)
    a033291_tabl = f 1 [1..] where
       f k xs = ys : f (k+1) (dropWhile (<= last ys) xs) where
         ys  = take k $ filter ((== 0) . (`mod` k)) xs
    a192735 n = head $ a033291_tabl !! (n-1)
    a192736 n = last $ a033291_tabl !! (n-1)
    -- Reinhard Zumkeller, Jan 18 2012, Jul 08 2011
    
  • Maple
    A033291 := proc(n,k)
        A192735(n)+(k-1)*n ;
    end proc:
    seq(seq(A033291(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Aug 10 2017
  • Mathematica
    Flatten[ Table[ n*(Floor[ (n-1)^2/3] + k), {n, 1, 12}, {k, 1, n}]] (* Jean-François Alcover, Sep 30 2011 *)
  • PARI
    a(n)=my(q=(sqrtint(8*n-7)+1)\2); q*n-q*(q+1)\6*q \\ Charles R Greathouse IV, Jan 06 2016

Formula

a(n) = q(n)*n - q(n)*floor(q(n)*(q(n)+1)/6) with q(n) = ceiling((1/2)*(-1 + sqrt(1+8*(n)))).

Extensions

Corrected and formula added by Johannes W. Meijer, Oct 07 2010
Showing 1-5 of 5 results.