cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A079326 a(n) = the largest number m such that if m monominoes are removed from an n X n square then an L-tromino must remain.

Original entry on oeis.org

1, 2, 7, 9, 17, 20, 31, 35, 49, 54, 71, 77, 97, 104, 127, 135, 161, 170, 199, 209, 241, 252, 287, 299, 337, 350, 391, 405, 449, 464, 511, 527, 577, 594, 647, 665, 721, 740, 799, 819, 881, 902, 967, 989, 1057, 1080, 1151, 1175, 1249, 1274, 1351, 1377, 1457
Offset: 2

Views

Author

Mambetov Timur (timur_teufel(AT)mail.ru), Feb 13 2003

Keywords

Examples

			a(3)=2 because if a middle row of 3 monominoes are removed from the 3 X 3, no L remains.
		

Crossrefs

Frobenius number for k successive numbers: A028387 (k=2), this sequence (k=3), A138984 (k=4), A138985 (k=5), A138986 (k=6), A138987 (k=7), A138988 (k=8).

Programs

  • Mathematica
    Table[FrobeniusNumber[{a, a + 1, a + 2}], {a, 2, 54}] (* Zak Seidov, Jan 08 2015 *)

Formula

a(n) = (n^2)/2 - 1 (n even), (n^2-n)/2 - 1 (n odd).
a(n) = A204557(n-1) / (n-1). - Reinhard Zumkeller, Jan 18 2012
From Bruno Berselli, Jan 18 2011: (Start)
G.f.: x^2*(1+x+3*x^2-x^4)/((1+x)^2*(1-x)^3).
a(n) = n*(2*n+(-1)^n-1)/4 - 1.
a(n) = A105638(-n+2). (End)

Extensions

Edited by Don Reble, May 28 2007

A045975 Take the first odd integer and multiple of 1, the next 2 even integers and multiples of 2, the next 3 odd integers and multiples of 3, the next 4 even integers and multiples of 4, ...

Original entry on oeis.org

1, 2, 4, 9, 15, 21, 24, 28, 32, 36, 45, 55, 65, 75, 85, 90, 96, 102, 108, 114, 120, 133, 147, 161, 175, 189, 203, 217, 224, 232, 240, 248, 256, 264, 272, 280, 297, 315, 333, 351, 369, 387, 405, 423, 441, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 561, 583, 605, 627, 649, 671, 693
Offset: 1

Views

Author

Fang-kuo Huang (gsyps(AT)ms17.hinet.net)

Keywords

Comments

A generalized Connell sequence.

Examples

			Triangle begins:
    1;
    2,   4;
    9,  15,  21;
   24,  28,  32,  36;
   45,  55,  65,  75,  85;
   90,  96, 102, 108, 114, 120;
  133, 147, 161, 175, 189, 203, 217;
  ...
		

Crossrefs

Seen as a triangle read by rows: cf. A204558 (row sums), A005917 (central terms), A204556 (left edge), A204557 (right edge).

Programs

  • Haskell
    a045975 n k = a045975_tabl !! (n-1) !! (k-1)
    a045975_row n = a045975_tabl !! (n-1)
    a045975_tabl = f 1 [1..] where
       f k xs = ys : f (k+1) (dropWhile (<= last ys) xs) where
         ys | even k    = take k ms
            | otherwise = take k $ filter odd ms
         ms = filter ((== 0) . (`mod` k)) xs
    -- Reinhard Zumkeller, Jan 18 2012
  • Mathematica
    first[n_?EvenQ] := (n - 1)*n^2/2; first[n_?OddQ] := n*(n^2 - 2n + 3)/2; row[n_] := (ro = {first[n]}; next = first[n] + n; While[ Length[ro] < n, If[Mod[next , 2] == Mod[n, 2], AppendTo[ro, next]]; next = next + n]; ro); Flatten[ Table[row[n], {n, 1, 11}]](* Jean-François Alcover, Jun 08 2012 *)

Extensions

More terms from James Sellers
Keyword tabl added by Reinhard Zumkeller, Jan 18 2012

A204556 Left edge of the triangle A045975.

Original entry on oeis.org

1, 2, 9, 24, 45, 90, 133, 224, 297, 450, 561, 792, 949, 1274, 1485, 1920, 2193, 2754, 3097, 3800, 4221, 5082, 5589, 6624, 7225, 8450, 9153, 10584, 11397, 13050, 13981, 15872, 16929, 19074, 20265, 22680, 24013, 26714, 28197, 31200, 32841, 36162, 37969, 41624
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 18 2012

Keywords

Programs

  • Haskell
    a204556 = head . a045975_row
    
  • Magma
    [n*(2*n^2-3*n+(-1)^n*(n-3)+3)/4: n in [1..50]]; // G. C. Greubel, Jun 15 2018
  • Mathematica
    Table[n*(2*n^2 - 3*n + (-1)^n*(n - 3) + 3)/4, {n, 1, 50}] (* G. C. Greubel, Jun 15 2018 *)
  • PARI
    Vec(x*(1+x+4*x^2+12*x^3+3*x^4+3*x^5)/((1+x)^3*(x-1)^4) + O(x^99)) \\ Charles R Greathouse IV, Jun 12 2015
    
  • PARI
    for(n=1, 50, print1(n*(2*n^2-3*n+(-1)^n*(n-3)+3)/4, ", ")) \\ G. C. Greubel, Jun 15 2018
    

Formula

a(n) = A045975(n,1);
a(n) = A031940(n-1) * n for n > 1;
a(n) = A204557(n) - A045895(n).
G.f.: x*(1+x+4*x^2+12*x^3+3*x^4+3*x^5) / ((1+x)^3*(x-1)^4). - R. J. Mathar, Aug 13 2012
From Colin Barker, Jan 28 2016: (Start)
a(n) = n*(2*n^2-3*n+(-1)^n*(n-3)+3)/4.
a(n) = (n^3-n^2)/2 for n even.
a(n) = (n^3-2*n^2+3*n)/2 for n odd.
(End)

A045895 Period length of pairs (a,b) where a has period 2n-2 and b has period n.

Original entry on oeis.org

0, 2, 12, 12, 40, 30, 84, 56, 144, 90, 220, 132, 312, 182, 420, 240, 544, 306, 684, 380, 840, 462, 1012, 552, 1200, 650, 1404, 756, 1624, 870, 1860, 992, 2112, 1122, 2380, 1260, 2664, 1406, 2964, 1560
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Lcm(2*n-2, n): n in [1..50]]; // G. C. Greubel, Jun 15 2018
  • Mathematica
    Table[ LCM[ 2*n-2, n ], {n, 40} ]
  • PARI
    for(n=1, 50, print1(lcm(2*n-2, n), ", ")) \\ G. C. Greubel, Jun 15 2018
    

Formula

a(n) = A204557(n) - A204556(n). - Reinhard Zumkeller, Jan 18 2012
From Amiram Eldar, Sep 14 2022: (Start)
a(n) = n*(n-1) for n even.
a(n) = 2*n*(n-1) for n odd.
a(n) = lcm(2*n-2, n).
a(n) = 2*A045896(n-2).
Sum_{n>=2} 1/a(n) = (log(2)+1)/2. (End)
Showing 1-4 of 4 results.