cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033316 Value of D for incrementally largest values of minimal x satisfying Pell equation x^2-Dy^2=1.

Original entry on oeis.org

1, 2, 5, 10, 13, 29, 46, 53, 61, 109, 181, 277, 397, 409, 421, 541, 661, 1021, 1069, 1381, 1549, 1621, 2389, 3061, 3469, 4621, 4789, 4909, 5581, 6301, 6829, 8269, 8941, 9949, 12541, 13381, 16069, 17341, 24049, 24229, 25309, 29269, 30781, 32341, 36061
Offset: 1

Views

Author

Keywords

Comments

Equally, value of D for incrementally largest values of minimal y satisfying Pell equation x^2-Dy^2=1.
Values of n where A002349 (or A002350) sets a new record.

Crossrefs

Programs

  • Mathematica
    PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[ Sqrt[m]]; n = Length[ Last[cf]]; If[ OddQ[n], n = 2*n]; s = FromContinuedFraction[ ContinuedFraction[ Sqrt[m], n]]; {Numerator[s], Denominator[s]}]; f[n_] := If[ !IntegerQ[ Sqrt[n]], PellSolve[n][[1]], 1]; a = b = -1; t = {}; Do[b = f[n]; If[b > a, t = Append[t, n]; a = b], {n, 1, 40500}]; t

Extensions

More terms from Robert G. Wilson v, Apr 15 2003