cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033453 "INVERT" transform of squares A000290.

Original entry on oeis.org

1, 5, 18, 63, 221, 776, 2725, 9569, 33602, 117995, 414345, 1454992, 5109273, 17941453, 63002258, 221235399, 776878533, 2728045592, 9579660701, 33639430153, 118126444802, 414806579603, 1456612858961, 5114964721440, 17961439747441, 63072442405845, 221481854849938, 777743974335503, 2731084630047981
Offset: 0

Views

Author

Keywords

Comments

Number of compositions of n+1 whose parts equal to q can be of q^2 kinds. Example: a(1)=5 because we have (2),(2'),(2"),(2'") and (1,1). Row sums of A105495. - Emeric Deutsch, Apr 10 2005

Crossrefs

Cf. A105495.

Programs

  • Maple
    read transforms; [seq(n^2,n=1..50)]; INVERT(%);
  • Mathematica
    nn=20;a=(x+x^2)/(1-x)^3;Drop[CoefficientList[Series[1/(1-a),{x,0,nn}],x],1]  (* Geoffrey Critzer, Aug 31 2012*)
  • PARI
    Vec((1 + x) / (1 - 4*x + 2*x^2 - x^3) + O(x^30)) \\ Colin Barker, Mar 19 2019

Formula

G.f.: (1 + x) / (1 - 4*x + 2*x^2 - x^3).
a(n) = 4*a(n-1) - 2*a(n-2) + a(n-3) for n>2. - Colin Barker, Mar 19 2019