A033457 GCD-convolution of squares A000290 with themselves.
1, 2, 6, 4, 19, 6, 28, 24, 45, 10, 98, 12, 79, 94, 120, 16, 201, 18, 238, 164, 171, 22, 436, 120, 229, 234, 426, 28, 695, 30, 496, 352, 369, 370, 1014, 36, 451, 470, 1068, 40, 1261, 42, 946, 1020, 639, 46, 1832, 336, 1225, 754, 1278, 52, 1899, 774, 1924, 920, 981
Offset: 0
Links
- Danny Rorabaugh, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
Table[Sum[d^2*EulerPhi[(n + 2)/d], {d, Most@ Divisors[n + 2]}], {n, 0, 47}] (* Michael De Vlieger, Mar 20 2015 *) f[p_, e_] := p^(e - 1)*(p^e*(p + 1) - 1); a[n_] := Times @@ f @@@ FactorInteger[n + 2] - (n + 2)^2; Array[a, 100, 0] (* Amiram Eldar, Dec 06 2024 *)
-
PARI
a(n) = {my(f = factor(n+2)); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; p^(e-1)*(p^e*(p+1) - 1)) - (n+2)^2;} \\ Amiram Eldar, Dec 06 2024
-
Sage
sum([d^2*euler_phi(int((n+2)/d)) for d in range(1,n+2) if (n+2)%d==0]) # Danny Rorabaugh, Mar 20 2015
Formula
a(n-2) = Sum_{d|n, dVladeta Jovovic, Aug 27 2003
From Amiram Eldar, Dec 06 2024: (Start)
a(n) = A069097(n+2) - (n+2)^2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(2)/zeta(3) - 1)/3 = (A306633 - 1)/3 = 0.122810925... . (End)