cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033457 GCD-convolution of squares A000290 with themselves.

Original entry on oeis.org

1, 2, 6, 4, 19, 6, 28, 24, 45, 10, 98, 12, 79, 94, 120, 16, 201, 18, 238, 164, 171, 22, 436, 120, 229, 234, 426, 28, 695, 30, 496, 352, 369, 370, 1014, 36, 451, 470, 1068, 40, 1261, 42, 946, 1020, 639, 46, 1832, 336, 1225, 754, 1278, 52, 1899, 774, 1924, 920, 981
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[d^2*EulerPhi[(n + 2)/d], {d, Most@ Divisors[n + 2]}], {n, 0, 47}] (* Michael De Vlieger, Mar 20 2015 *)
    f[p_, e_] := p^(e - 1)*(p^e*(p + 1) - 1); a[n_] := Times @@ f @@@ FactorInteger[n + 2] - (n + 2)^2; Array[a, 100, 0] (* Amiram Eldar, Dec 06 2024 *)
  • PARI
    a(n) = {my(f = factor(n+2)); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; p^(e-1)*(p^e*(p+1) - 1)) - (n+2)^2;} \\ Amiram Eldar, Dec 06 2024
  • Sage
    sum([d^2*euler_phi(int((n+2)/d)) for d in range(1,n+2) if (n+2)%d==0]) # Danny Rorabaugh, Mar 20 2015
    

Formula

a(n-2) = Sum_{d|n, dVladeta Jovovic, Aug 27 2003
From Amiram Eldar, Dec 06 2024: (Start)
a(n) = A069097(n+2) - (n+2)^2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(2)/zeta(3) - 1)/3 = (A306633 - 1)/3 = 0.122810925... . (End)