A033493 Sum of the numbers in the trajectory of n for the 3x+1 problem.
1, 3, 49, 7, 36, 55, 288, 15, 339, 46, 259, 67, 119, 302, 694, 31, 214, 357, 519, 66, 148, 281, 633, 91, 658, 145, 101440, 330, 442, 724, 101104, 63, 841, 248, 540, 393, 535, 557, 2344, 106, 101331, 190, 1338, 325, 497, 679, 100979, 139, 806, 708, 1130, 197
Offset: 1
Examples
a(5) = 36 because the Ulam's conjecture trajectory sequence starting on 5 runs 5, 16, 8, 4, 2, 1 and therefore 5 + 16 + 8 + 4 + 2 + 1 = 36. - _Alonso del Arte_, Apr 10 2009
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Collatz Problem
- Wikipedia, Collatz conjecture
- Index entries for sequences related to 3x+1 (or Collatz) problem
Programs
-
Haskell
a033493 = sum . a070165_row -- Reinhard Zumkeller, Oct 08 2011
-
Maple
a:= proc(n) option remember; n+`if`(n=1, 0, a(`if`(n::even, n/2, 3*n+1))) end: seq(a(n), n=1..55); # Alois P. Heinz, Jan 29 2021
-
Mathematica
collatz[1] = 1; collatz[n_Integer?OddQ] := 3n + 1; collatz[n_Integer?EvenQ] := n/2; Table[-1 + Plus @@ FixedPointList[collatz, n], {n, 60}] (* Alonso del Arte, Apr 10 2009 *)
-
Python
def a(n): if n==1: return 1 l=[n, ] while True: if n%2==0: n//=2 else: n = 3*n + 1 l+=[n, ] if n<2: break return sum(l) print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 14 2017
Formula
Extensions
Corrected a(16) to 31 to match other powers of 2; removed duplicate value of a(48) = 139 because a(49) = 806 and not 139. - Alonso del Arte, Apr 10 2009
Comments