A171515
Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A033543.
Original entry on oeis.org
1, 2, 1, 5, 4, 1, 16, 14, 6, 1, 62, 52, 27, 8, 1, 270, 213, 116, 44, 10, 1, 1257, 948, 513, 216, 65, 12, 1, 6096, 4470, 2376, 1038, 360, 90, 14, 1, 30398, 21904, 11468, 5056, 1880, 556, 119, 16, 1
Offset: 0
Triangle begins : 1 ; 2,1 : 5,4,1 ; 16,14,6,1 ; 62,52,27,8,1 ; ...
A052179
Triangle of numbers arising in enumeration of walks on cubic lattice.
Original entry on oeis.org
1, 4, 1, 17, 8, 1, 76, 50, 12, 1, 354, 288, 99, 16, 1, 1704, 1605, 700, 164, 20, 1, 8421, 8824, 4569, 1376, 245, 24, 1, 42508, 48286, 28476, 10318, 2380, 342, 28, 1, 218318, 264128, 172508, 72128, 20180, 3776, 455, 32, 1, 1137400, 1447338
Offset: 0
Triangle begins:
1;
4, 1;
17, 8, 1;
76, 50, 12, 1;
354, 288, 99, 16, 1;
...
Production matrix begins:
4, 1;
1, 4, 1;
0, 1, 4, 1;
0, 0, 1, 4, 1;
0, 0, 0, 1, 4, 1;
0, 0, 0, 0, 1, 4, 1;
0, 0, 0, 0, 0, 1, 4, 1;
- _Philippe Deléham_, Nov 04 2011
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
- Rigoberto Flórez, Leandro Junes, José L. Ramírez, Further Results on Paths in an n-Dimensional Cubic Lattice, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.2.
- R. K. Guy, Catwalks, Sandsteps and Pascal Pyramids, J. Integer Seqs., Vol. 3 (2000), #00.1.6.
-
T:= proc(n, k) option remember; `if`(min(n, k)<0, 0,
`if`(max(n, k)=0, 1, T(n-1, k-1)+4*T(n-1, k)+T(n-1, k+1)))
end:
seq(seq(T(n,k), k=0..n), n=0..10); # Alois P. Heinz, Oct 28 2021
-
t[0, 0] = 1; t[n_, k_] /; k < 0 || k > n = 0; t[n_, 0] := t[n, 0] = 4*t[n-1, 0] + t[n-1, 1]; t[n_, k_] := t[n, k] = t[n-1, k-1] + 4*t[n-1, k] + t[n-1, k+1]; Flatten[ Table[t[n, k], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Oct 10 2011, after Philippe Deleham *)
A124575
Triangle read by rows: row n is the first row of the matrix M[n]^(n-1), where M[n] is the n X n tridiagonal matrix with main diagonal (2,4,4,...) and super- and subdiagonals (1,1,1,...).
Original entry on oeis.org
1, 2, 1, 5, 6, 1, 16, 30, 10, 1, 62, 146, 71, 14, 1, 270, 717, 444, 128, 18, 1, 1257, 3582, 2621, 974, 201, 22, 1, 6096, 18206, 15040, 6718, 1800, 290, 26, 1, 30398, 93960, 85084, 43712, 14208, 2986, 395, 30, 1, 154756, 491322, 478008, 274140, 103530
Offset: 0
Row 2 is (5,6,1) because M[3]= [2,1,0;1,4,1;0,1,4] and M[3]^2=[5,6,1;6,18,8;1,8,17].
Triangle starts:
1;
2, 1;
5, 6, 1;
16, 30, 10, 1;
62, 146, 71, 14, 1;
270, 717, 444, 128, 18, 1;
-
with(linalg): m:=proc(i,j) if i=1 and j=1 then 2 elif i=j then 4 elif abs(i-j)=1 then 1 else 0 fi end: for n from 3 to 11 do A[n]:=matrix(n,n,m): B[n]:=multiply(seq(A[n],i=1..n-1)) od: 1; 2,1; for n from 3 to 11 do seq(B[n][1,j],j=1..n) od; # yields sequence in triangular form
-
M[n_] := SparseArray[{{1, 1} -> 2, Band[{2, 2}] -> 4, Band[{1, 2}] -> 1, Band[{2, 1}] -> 1}, {n, n}]; row[1] = {1}; row[n_] := MatrixPower[M[n], n-1] // First // Normal; Table[row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)
A171568
Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A064613.
Original entry on oeis.org
1, 3, 1, 10, 6, 1, 37, 29, 9, 1, 150, 134, 57, 12, 1, 654, 622, 318, 94, 15, 1, 3012, 2948, 1686, 616, 140, 18, 1, 14445, 14317, 8781, 3693, 1055, 195, 21, 1, 71398, 71142, 45625, 21132, 7075, 1662, 259, 24, 1, 361114, 360602, 238170, 118042, 44303, 12345, 2464, 332, 27, 1
Offset: 0
Triangle T(n,k) begins
[0] 1;
[1] 3, 1;
[2] 10, 6, 1;
[3] 37, 29, 9, 1;
[4] 150, 134, 57, 12, 1;
[5] 654, 622, 318, 94, 15, 1;
[6] 3012, 2948, 1686, 616, 140, 18, 1;
[7] 14445, 14317, 8781, 3693, 1055, 195, 21, 1;
[8] 71398, 71142, 45625, 21132, 7075, 1662, 259, 24, 1;
.
Production array begins
3, 1
1, 3, 1
1, 1, 3, 1
1, 1, 1, 3, 1
1, 1, 1, 1, 3, 1
1, 1, 1, 1, 1, 3, 1
- _Philippe Deléham_, Mar 05 2013
-
T := proc(n,k) option remember;
if n < 0 or k < 0 then 0 elif n = k then 1 else
T(n-1, k-1) + 3*T(n-1,k) + add(T(n-1, k+1+i), i=0..n) fi end:
for n from 0 to 8 do seq(T(n,k), k = 0..n) od; # Peter Luschny, Oct 16 2022
-
T[n_, k_] := T[n, k] = If[n < 0 || k < 0, 0, If[n == k, 1, T[n-1, k-1] + 3*T[n-1, k] + Sum[T[n-1, k+1+i], {i, 0, n}]]];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 23 2024, after Peter Luschny *)
A171388
Expansion of the first column of triangle T_(2,x), T_(x,y) defined in A039599; T_(2,0)= A126075, T_(2,1)= A038622, T_(2,2)= A039598, T_(2,3)= A124733, T_(2,4)= A124575.
Original entry on oeis.org
1, 2, 0, 5, 0, 0, 12, 1, 0, 0, 30, 4, 1, 0, 0, 74, 17, 4, 1, 0, 0, 185, 56, 21, 4, 1, 0, 0, 460, 185, 74, 26, 4, 1, 0, 0
Offset: 0
Triangle begins:
1;
2, 0;
5, 0, 0;
12, 1, 0, 0;
30, 4, 1, 0, 0;
74, 17, 4, 1, 0, 0;
...
A171616
Triangle T : T(n,k)= binomial(n,k)*A000957(n+1-k).
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 6, 8, 6, 0, 1, 18, 30, 20, 10, 0, 1, 57, 108, 90, 40, 15, 0, 1, 186, 399, 378, 210, 70, 21, 0, 1, 622, 1488, 1596, 1008, 420, 112, 28, 0, 1, 2120, 5598, 6696, 4788, 2268, 756, 168, 36, 0, 1, 7338, 21200, 27990, 22320, 11970, 4536, 1260, 240, 45
Offset: 0
Triangle begins : 1 ; 0,1 ; 1,0,1 ; 2,3,0,1 ; 6,8,6,0,1 ; 18,30,20,10,0,1 ; ...
Showing 1-6 of 6 results.
Comments