cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033550 a(n) = A005248(n) - n.

Original entry on oeis.org

2, 2, 5, 15, 43, 118, 316, 836, 2199, 5769, 15117, 39592, 103670, 271430, 710633, 1860483, 4870831, 12752026, 33385264, 87403784, 228826107, 599074557, 1568397585, 4106118220, 10749957098, 28143753098, 73681302221, 192900153591
Offset: 0

Views

Author

Keywords

Comments

Also distinct compositions of the wheel graph W_n. - Ralf Stephan, Jan 02 2003

Crossrefs

Programs

  • GAP
    List([0..50], n-> Lucas(1,-1, 2*n)[2] - n ); # G. C. Greubel, Oct 12 2019
  • Magma
    [Lucas(2*n) - n: n in [0..50]]; // G. C. Greubel, Oct 12 2019
    
  • Maple
    with(combinat); seq(fibonacci(2*n+1)+fibonacci(2*n-1)-n, n=0..50); # G. C. Greubel, Oct 12 2019
  • Mathematica
    Table[LucasL[2*n]-n, {n,0,50}] (* G. C. Greubel, Oct 12 2019 *)
  • PARI
    a(n)=fibonacci(2*n+1)+fibonacci(2*n-1)-n
    
  • Sage
    [lucas_number2(2*n, 1,-1) - n for n in range(50)] # G. C. Greubel, Oct 12 2019
    

Formula

a(n) = 3*a(n-1) - a(n-2) + n - 1.
G.f.: (2 - 8*x + 11*x^2 - 4*x^3)/((1-3*x+x^2)*(1-x)^2).
a(n) = Lucas(2*n) - n. - G. C. Greubel, Oct 12 2019
E.g.f.: 2*exp(3*x/2)*cosh(sqrt(5)*x/2) - exp(x)*x. - Stefano Spezia, Oct 14 2024