A033552 Number of partitions into Catalan numbers.
1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 17, 19, 22, 24, 27, 30, 34, 37, 41, 44, 49, 53, 58, 62, 68, 73, 80, 85, 92, 98, 106, 113, 121, 128, 137, 145, 155, 163, 175, 184, 197, 207, 220, 232, 246, 259, 274, 287, 304, 318, 336, 351, 371, 388, 409, 427, 449, 469
Offset: 0
Examples
n=4 has 3 partitions: 2+2, 2+1+1, 1+1+1+1. n=5 has 4 partitions: 5, 2+2+1, 2+1+1+1, 1+1+1+1+1.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..250
- Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
Crossrefs
Cf. A000108.
Cf. A176137. [Reinhard Zumkeller, Apr 09 2010]
Formula
G.f.: Product_{n>=1} 1/(1 - x^(binomial(2*n, n)/(n+1))).
a(n) = f(n,1,1) with f(m,k,c) = if c > m then 0^m else f(m-c,k,c) + f(m,k+1,2*c*(2*k+1)/(k+2)). [Reinhard Zumkeller, Apr 09 2010]