A033620 Numbers all of whose prime factors are palindromes.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 49, 50, 54, 55, 56, 60, 63, 64, 66, 70, 72, 75, 77, 80, 81, 84, 88, 90, 96, 98, 99, 100, 101, 105, 108, 110, 112, 120, 121, 125, 126, 128, 131
Offset: 1
Examples
10 = 2 * 5 is a term since both 2 and 5 are palindromes. 110 = 2 * 5 * 11 is a term since 2, 5 and 11 are palindromes.
Links
Programs
-
Haskell
a033620 n = a033620_list !! (n-1) a033620_list = filter chi [1..] where chi n = a136522 spf == 1 && (n' == 1 || chi n') where n' = n `div` spf spf = a020639 n -- cf. A020639 -- Reinhard Zumkeller, Apr 11 2011
-
Maple
N:= 5: # to get all terms of up to N digits digrev:= proc(t) local L; L:= convert(t,base,10); add(L[-i-1]*10^i,i=0..nops(L)-1); end proc: PPrimes:= [2,3,5,7,11]: for d from 3 to N by 2 do m:= (d-1)/2; PPrimes:= PPrimes, select(isprime,[seq(seq(n*10^(m+1)+y*10^m+digrev(n), y=0..9), n=10^(m-1)..10^m-1)]); od: PPrimes:= map(op,[PPrimes]): M:= 10^N: B:= Vector(M); B[1]:= 1: for p in PPrimes do for k from 1 to floor(log[p](M)) do R:= [$1..floor(M/p^k)]; B[p^k*R] := B[p^k*R] + B[R] od od: select(t -> B[t] > 0, [$1..M]); # Robert Israel, Jul 05 2015 # alternative isA033620:= proc(n) for d in numtheory[factorset](n) do if not isA002113(op(1,d)) then return false; end if; end do; true ; end proc: for n from 1 to 300 do if isA033620(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Sep 09 2015
-
Mathematica
palQ[n_]:=Reverse[x=IntegerDigits[n]]==x; Select[Range[131],And@@palQ/@First/@FactorInteger[#]&] (* Jayanta Basu, Jun 05 2013 *)
-
PARI
ispal(n)=n=digits(n);for(i=1,#n\2,if(n[i]!=n[#n+1-i],return(0)));1 is(n)=if(n<13,n>0,vecmin(apply(ispal,factor(n)[,1]))) \\ Charles R Greathouse IV, Feb 06 2013
-
Python
from sympy import isprime, primefactors def pal(n): s = str(n); return s == s[::-1] def ok(n): return all(pal(f) for f in primefactors(n)) print(list(filter(ok, range(1, 132)))) # Michael S. Branicky, Apr 06 2021
Formula
Sum_{n>=1} 1/a(n) = Product_{p in A002385} p/(p-1) = 5.0949... - Amiram Eldar, Sep 27 2020
Comments