A002385 Palindromic primes: prime numbers whose decimal expansion is a palindrome.
2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741, 15451, 15551, 16061, 16361, 16561, 16661, 17471, 17971, 18181, 18481, 19391, 19891, 19991
Offset: 1
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 228.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 120-121.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..47995 (all palindromic primes with fewer than 12 digits), Oct 14 2015, extending earlier b-files from T. D. Noe and A. Olah.
- W. D. Banks, D. N. Hart, and M. Sakata, Almost all palindromes are composite, Math. Res. Lett., 11 No. 5-6 (2004), 853-868.
- K. S. Brown, On General Palindromic Numbers
- C. K. Caldwell, "Top Twenty" page, Palindrome
- Patrick De Geest, World!Of Palindromic Primes
- Lubomira Dvorakova, Stanislav Kruml, and David Ryzak, Antipalindromic numbers, arXiv:2008.06864 [math.CO], 2020. Mentions this sequence.
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- Dmytro S. Inosov and Emil Vlasák, Cryptarithmically unique terms in integer sequences, arXiv:2410.21427 [math.NT], 2024. See pp. 10, 18.
- T. D. Noe, Log-log plot of the first 401696 terms
- I. Peterson, Math Trek, Palindromic Primes
- Phakhinkon Phunphayap and Prapanpong Pongsriiam, Reciprocal sum of palindromes, arXiv:1803.00161 [math.CA], 2018.
- M. Shafer, First 401066 Palprimes
- Eric Weisstein's World of Mathematics, Palindromic Number
- Eric Weisstein's World of Mathematics, Palindromic Prime
- Eric Weisstein's World of Mathematics, Integer Sequence Primes
- Wikipedia, Palindromic prime
- Index entries for sequences related to palindromes
Crossrefs
Subsequence of A188650; A188649(a(n)) = a(n); see A033620 for multiplicative closure. [Reinhard Zumkeller, Apr 11 2011]
Cf. A016115 (number of prime palindromes with n digits).
Programs
-
GAP
Filtered([1..20000],n->IsPrime(n) and ListOfDigits(n)=Reversed(ListOfDigits(n))); # Muniru A Asiru, Mar 08 2019
-
Haskell
a002385 n = a002385_list !! (n-1) a002385_list = filter ((== 1) . a136522) a000040_list -- Reinhard Zumkeller, Apr 11 2011
-
Maple
ff := proc(n) local i,j,k,s,aa,nn,bb,flag; s := n; aa := convert(s,string); nn := length(aa); bb := ``; for i from nn by -1 to 1 do bb := cat(bb,substring(aa,i..i)); od; flag := 0; for j from 1 to nn do if substring(aa,j..j)<>substring(bb,j..j) then flag := 1 fi; od; RETURN(flag); end; gg := proc(i) if ff(ithprime(i)) = 0 then RETURN(ithprime(i)) fi end; rev:=proc(n) local nn, nnn: nn:=convert(n,base,10): add(nn[nops(nn)+1-j]*10^(j-1),j=1..nops(nn)) end: a:=proc(n) if n=rev(n) and isprime(n)=true then n else fi end: seq(a(n),n=1..20000); # rev is a Maple program to revert a number - Emeric Deutsch, Mar 25 2007 # A002385 Gets all base-10 palindromic primes with exactly d digits, in the list "Res" d:=7; # (say) if d=1 then Res:= [2,3,5,7]: elif d=2 then Res:= [11]: elif d::even then Res:=[]: else m:= (d-1)/2: Res2 := [seq(seq(n*10^(m+1)+y*10^m+digrev(n), y=0..9), n=10^(m-1)..10^m-1)]: Res:=[]: for x in Res2 do if isprime(x) then Res:=[op(Res),x]; fi: od: fi: Res; # N. J. A. Sloane, Oct 18 2015
-
Mathematica
Select[ Prime[ Range[2100] ], IntegerDigits[#] == Reverse[ IntegerDigits[#] ] & ] lst = {}; e = 3; Do[p = n*10^(IntegerLength[n] - 1) + FromDigits@Rest@Reverse@IntegerDigits[n]; If[PrimeQ[p], AppendTo[lst, p]], {n, 10^e - 1}]; Insert[lst, 11, 5] (* Arkadiusz Wesolowski, May 04 2012 *) Join[{2,3,5,7,11},Flatten[Table[Select[Prime[Range[PrimePi[ 10^(2n)]+1, PrimePi[ 10^(2n+1)]]],# == IntegerReverse[#]&],{n,3}]]] (* The program uses the IntegerReverse function from Mathematica version 10 *) (* Harvey P. Dale, Apr 22 2016 *) genPal[n_Integer, base_Integer: 10] := Block[{id = IntegerDigits[n, base], insert = Join[{{}}, {# - 1} & /@ Range[base]]}, FromDigits[#, base] & /@ (Join[id, #, Reverse@id] & /@ insert)]; k = 1; lst = {2, 3, 5, 7}; While[k < 19, p = Select[genPal[k], PrimeQ]; If[p != {}, AppendTo[lst, p]]; k++]; Flatten@ lst (* RGWv *) Select[ Prime[ Range[2100]], PalindromeQ] (* Jean-François Alcover, Feb 17 2018 *) NestList[NestWhile[NextPrime, #, ! PalindromeQ[#2] &, 2] &, 2, 41] (* Jan Mangaldan, Jul 01 2020 *)
-
PARI
is(n)=n==eval(concat(Vecrev(Str(n))))&&isprime(n) \\ Charles R Greathouse IV, Nov 20 2012
-
PARI
forprime(p=2,10^5, my(d=digits(p,10)); if(d==Vecrev(d),print1(p,", "))); \\ Joerg Arndt, Aug 17 2014
-
PARI
A002385_row(n)=select(is_A002113, primes([10^(n-1),10^n])) \\ Terms with n digits. For larger n, better filter primes in palindromes. - M. F. Hasler, Dec 19 2024
-
Python
from itertools import chain from sympy import isprime A002385 = sorted((n for n in chain((int(str(x)+str(x)[::-1]) for x in range(1,10**5)),(int(str(x)+str(x)[-2::-1]) for x in range(1,10**5))) if isprime(n))) # Chai Wah Wu, Aug 16 2014
-
Python
from sympy import isprime A002385 = [*filter(isprime, (int(str(x) + str(x)[-2::-1]) for x in range(10**5)))] A002385.insert(4, 11) # Yunhan Shi, Mar 03 2023
-
Python
from sympy import isprime from itertools import count, islice, product def A002385gen(): # generator of palprimes yield from [2, 3, 5, 7, 11] for d in count(3, 2): for last in "1379": for p in product("0123456789", repeat=d//2-1): left = "".join(p) for mid in [[""], "0123456789"][d&1]: t = int(last + left + mid + left[::-1] + last) if isprime(t): yield t print(list(islice(A002385gen(), 46))) # Michael S. Branicky, Apr 13 2025
-
Sage
[n for n in (2..18181) if is_prime(n) and Word(n.digits()).is_palindrome()] # Peter Luschny, Sep 13 2018
Formula
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Oct 25 2000
Comment from A006093 moved here by Franklin T. Adams-Watters, Dec 03 2009
Comments