A007500 Primes whose reversal in base 10 is also prime (called "palindromic primes" by David Wells, although that name usually refers to A002385). Also called reversible primes.
2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 101, 107, 113, 131, 149, 151, 157, 167, 179, 181, 191, 199, 311, 313, 337, 347, 353, 359, 373, 383, 389, 701, 709, 727, 733, 739, 743, 751, 757, 761, 769, 787, 797, 907, 919, 929, 937, 941, 953, 967, 971, 983, 991, 1009, 1021
Offset: 1
References
- Roozbeh Hazrat, Mathematica: A Problem-Centered Approach, Springer 2010, pp. 39, 131-132
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 113.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 134.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Cécile Dartyge, Bruno Martin, Joël Rivat, Igor E. Shparlinski, and Cathy Swaenepoel, Reversible primes, arXiv:2309.11380 [math.NT], 2023. See p. 3.
Crossrefs
Programs
-
Haskell
a007500 n = a007500_list !! (n-1) a007500_list = filter ((== 1) . a010051 . a004086) a000040_list -- Reinhard Zumkeller, Oct 14 2011
-
Magma
[ p: p in PrimesUpTo(1030) | IsPrime(Seqint(Reverse(Intseq(p)))) ]; // Bruno Berselli, Jul 08 2011
-
Maple
revdigs:= proc(n) local L,nL,i; L:= convert(n,base,10); nL:= nops(L); add(L[i]*10^(nL-i),i=1..nL); end: Primes:= select(isprime,{2,seq(2*i+1,i=1..5*10^5)}): Primes intersect map(revdigs,Primes); # Robert Israel, Aug 14 2014
-
Mathematica
Select[ Prime[ Range[ 168 ] ], PrimeQ[ FromDigits[ Reverse[ IntegerDigits[ # ] ] ] ]& ] (* Zak Seidov, corrected by T. D. Noe *) Select[Prime[Range[1000]],PrimeQ[IntegerReverse[#]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 15 2016 *)
-
PARI
is_A007500(n)={ isprime(n) & is_A095179(n)} \\ M. F. Hasler, Jan 13 2012
-
Python
from sympy import prime, isprime A007500 = [prime(n) for n in range(1,10**6) if isprime(int(str(prime(n))[::-1]))] # Chai Wah Wu, Aug 14 2014
-
Python
from gmpy2 import is_prime, mpz from itertools import count, islice, product def agen(): # generator of terms yield from [2, 3, 5, 7] p = 11 for digits in count(2): for first in "1379": for mid in product("0123456789", repeat=digits-2): for last in "1379": s = first + "".join(mid) + last if is_prime(t:=mpz(s)) and is_prime(mpz(s[::-1])): yield int(t) print(list(islice(agen(), 60))) # Michael S. Branicky, Jan 02 2025
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Oct 31 2000
Added further terms to the sequence Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 16 2009. Checked by N. J. A. Sloane, Jan 20 2009.
Third reference added by Harvey P. Dale, Oct 17 2011
Comments