A111383 Beginning with 3, least member of A007500 such that concatenation of first n terms and its digit reversal both are primes.
3, 7, 3, 3, 79, 701, 157, 1103, 11959, 1901, 10273, 92753, 17047, 11909, 144973, 327251, 99289, 92831, 90373, 309671, 1149619, 745397, 1232083, 94793, 18481, 76607, 186649, 181421, 1657561, 3746111, 7067239, 324143, 3185263, 9457181, 1703413, 3517583, 72481, 12859481
Offset: 1
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..164
Programs
-
Python
from gmpy2 import digits, is_prime, mpz from itertools import count, islice, product def bgen(): # generator of terms of A007500 -{2, 5} as strings yield from "37" p = 11 for digits in count(2): for first in "1379": for mid in product("0123456789", repeat=digits-2): for last in "1379": s = first + "".join(mid) + last if is_prime(mpz(s)) and is_prime(mpz(s[::-1])): yield s def agen(): # generator of terms s, r, an, san = "", "", 3, "3" while True: yield int(an) s, r = s+san, san[::-1]+r for san in bgen(): if is_prime(mpz(s+san)) and is_prime(mpz(san[::-1]+r)): break an = mpz(san) print(list(islice(agen(), 34))) # Michael S. Branicky, Jan 02 2025
Extensions
a(35) and beyond from Michael S. Branicky, Jan 02 2025
Comments