cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033689 Number of extreme quadratic forms or lattices in dimension n.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 30, 2408
Offset: 1

Views

Author

Keywords

Comments

A lattice is extreme if and only if it is perfect and eutactic. - Andrey Zabolotskiy, Feb 20 2021

References

  • J. H. Conway and N. J. A. Sloane, Low-dimensional lattices III: perfect forms, Proc. Royal Soc. London, A 418 (1988), 43-80.
  • M. Dutour Sikiric, A. Schuermann and F. Vallentin, Classification of eight-dimensional perfect forms, Preprint, 2006.
  • P. M. Gruber, Convex and Discrete Geometry, Springer, 2007; p. 439
  • D.-O. Jaquet, Classification des réseaux dans R^7 (via la notion de formes parfaites), Journées Arithmétiques, 1989 (Luminy, 1989). Asterisque No. 198-200 (1991), 7-8, 177-185 (1992).
  • J. Martinet, Les réseaux parfaits des espaces Euclidiens, Masson, Paris, 1996, p. 175.
  • J. Martinet, Perfect Lattices in Euclidean Spaces, Springer-Verlag, NY, 2003.
  • G. Nebe, Review of J. Martinet, Perfect Lattices in Euclidean Spaces, Bull. Amer. Math. Soc., 41 (No. 4, 2004), 529-533.
  • A. Schuermann, Enumerating perfect forms, Contemporary Math., 493 (2009), 359-377. [From N. J. A. Sloane, Jan 21 2010]

Crossrefs

Cf. A004026 (perfect), A037075 (eutactic).

Extensions

a(8) = 2408 was calculated by G. Nebe's student Cordian Riener - communicated by G. Nebe, Oct 11 2005. He found this number by checking the complete list of 10916 perfect lattices in 8 dimensions (see A004026).