cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A080917 Number of integer solutions to the equation 2*x^2 + y^2 + 8*z^2 = n.

Original entry on oeis.org

1, 2, 2, 4, 2, 0, 4, 0, 4, 10, 4, 12, 8, 0, 8, 0, 6, 16, 6, 12, 8, 0, 4, 0, 8, 10, 12, 16, 0, 0, 8, 0, 12, 16, 8, 24, 10, 0, 12, 0, 8, 32, 8, 12, 24, 0, 8, 0, 8, 18, 14, 24, 8, 0, 16, 0, 16, 16, 4, 36, 0, 0, 16, 0, 6, 32, 16, 12, 16, 0, 8, 0, 12, 16, 20, 28, 24, 0, 8, 0, 24, 34, 8, 36, 16, 0
Offset: 0

Views

Author

Michael Somos, Feb 23 2003

Keywords

Examples

			G.f. = 1 + 2*q + 2*q^2 + 4*q^3 + 2*q^4 + 4*q^6 + 4*q^8 + 10*q^9 + 4*q^10 + ...
		

Crossrefs

Cf. A000122 (theta_3(q)), A033717, A072068, A080918.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2] EllipticTheta[ 3, 0, q^8], {q, 0, n}]; (* Michael Somos, Feb 19 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^4 + A)^3 * eta(x^16 + A)^5 / (eta(x + A) * eta(x^8 + A)^2 * eta(x^32 + A))^2, n))};

Formula

Euler transform of period-32 sequence [2, -1, 2, -4, 2, -1, 2, 0, 2, -1, 2, -4, 2, -1, 2, -5, 2, -1, 2, -4, 2, -1, 2, 0, 2, -1, 2, -4, 2, -1, 2, -3, ...].
G.f.: theta_3(q) * theta_3(q^2) * theta_3(q^8).
a(2*n - 1) = A072068(n). a(2*n) = A033717(n).

A246811 Expansion of phi(x)^2 * psi(x^4) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 4, 4, 0, 5, 12, 4, 0, 8, 12, 8, 0, 5, 16, 12, 0, 8, 24, 4, 0, 16, 12, 12, 0, 9, 24, 12, 0, 8, 36, 12, 0, 16, 12, 16, 0, 8, 28, 16, 0, 17, 36, 8, 0, 24, 24, 8, 0, 8, 36, 28, 0, 16, 36, 12, 0, 16, 24, 20, 0, 13, 24, 24, 0, 24, 60, 8, 0, 16, 36, 16, 0, 16, 28
Offset: 0

Views

Author

Michael Somos, Sep 03 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 4*x + 4*x^2 + 5*x^4 + 12*x^5 + 4*x^6 + 8*x^8 + 12*x^9 + ...
G.f. = q + 4*q^3 + 4*q^5 + 5*q^9 + 12*q^11 + 4*q^13 + 8*q^17 + 12*q^19 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x]^2 EllipticTheta[ 2, 0, x^2] / (2 x^(1/2)), {x, 0, n}];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)]^4 / (16 x^(1/2) EllipticTheta[ 3, 0, x^2]), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^10 * eta(x^8 + A)^2 / (eta(x + A)^4 * eta(x^4 + A)^5), n))};

Formula

Expansion of psi(x)^4 / phi(x^2) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of q^(-1/2) * eta(q^2)^10 * eta(q^8)^2 / (eta(q)^4 * eta(q^4)^5) in powers of q.
Euler transform of period 8 sequence [4, -6, 4, -1, 4, -6, 4, -3, ...].
2 * a(n) = A033717(4*n + 2). a(2*n) = A045834(n). a(4*n) = A213022(n). a(4*n + 1) = 4 * A008443(n). a(4*n + 2) = 4 * A045831(n). a(4*n + 3) = 0.

A246631 Number of integer solutions to x^2 + 2*y^2 + 2*z^2 = n.

Original entry on oeis.org

1, 2, 4, 8, 6, 8, 8, 0, 12, 10, 8, 24, 8, 8, 16, 0, 6, 16, 12, 24, 24, 16, 8, 0, 24, 10, 24, 32, 0, 24, 16, 0, 12, 16, 16, 48, 30, 8, 24, 0, 24, 32, 16, 24, 24, 24, 16, 0, 8, 18, 28, 48, 24, 24, 32, 0, 48, 16, 8, 72, 0, 24, 32, 0, 6, 32, 32, 24, 48, 32, 16, 0
Offset: 0

Views

Author

Michael Somos, Aug 31 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 4*q^2 + 8*q^3 + 6*q^4 + 8*q^5 + 8*q^6 + 12*q^8 + 10*q^9 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(8), 3/2), 80); A[1] + 2*A[2];
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2]^2, {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, 2 * qfrep([ 1, 0, 0; 0, 2, 0; 0, 0, 2], n)[n])};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^8 / (eta(x + A)^2 * eta(x^8 + A)^4), n))};
    

Formula

Theta series of quadratic form with Gram matrix [ 1, 0, 0; 0, 2, 0; 0, 0, 2 ].
Expansion of phi(q) * phi(q^2)^2 = phi(-q^4)^4 / phi(-q) in powers of q where phi() is a Ramanujan theta function.
Expansion of eta(q^2) * eta(q^4)^8 / (eta(q)^2 * eta(q^8)^4) in powers of q.
Euler transform of period 8 sequence [ 2, 1, 2, -7, 2, 1, 2, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 4 (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A014455.
G.f.: theta_3(q) * theta_3(q^2)^2.
G.f.: Product{k>0} (1 - x^(2*k)) * (1 - x^(4*k))^8 / ((1 - x^k)^2 * (1 - x^(8*k))^4).
G.f.: Product{k>0} (1 + x^(2*k)) * (1 + x^k)^2 * (1 - x^(4*k))^3 / (1 + x^(4*k))^4.
a(n) = (-1)^floor((n+1) / 2) * A212885(n) = abs(A212885(n)).
a(n) = A033717(2*n). a(2*n) = A014455(n). a(2*n + 1) = 2 * A246811(n).
a(4*n) = A005875(n). a(4*n + 1) = 2 * A045834(n). a(4*n + 2) = 4 * A045828(n).
a(8*n) = A004015(n). a(8*n + 1) = 2 * A213022(n). a(8*n + 2) = 4 * A213625(n). a(8*n + 3) = 8 * A008443(n). a(8*n + 4) = 2 * A045826(n). a(8*n + 5) = 8 * A045831(n). a(8*n + 6) = 8 * A213624(n). a(8*n + 7) = 0.

A306518 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of Product_{d|k} theta_3(q^d).

Original entry on oeis.org

1, 1, 2, 1, 2, 0, 1, 2, 2, 0, 1, 2, 0, 4, 2, 1, 2, 2, 2, 2, 0, 1, 2, 0, 4, 6, 0, 0, 1, 2, 2, 0, 4, 0, 4, 0, 1, 2, 0, 6, 2, 4, 0, 0, 0, 1, 2, 2, 0, 6, 2, 8, 4, 2, 2, 1, 2, 0, 4, 2, 4, 4, 8, 0, 6, 0, 1, 2, 2, 2, 4, 0, 14, 0, 6, 2, 0, 0, 1, 2, 0, 4, 6, 4, 0, 8, 0, 6, 0, 4, 0, 1, 2, 2, 0, 2, 0, 8, 2, 6, 6, 8, 0, 4, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 21 2019

Keywords

Examples

			Square array begins:
  1,  1,  1,  1,  1,  1,  ...
  2,  2,  2,  2,  2,  2,  ...
  0,  2,  0,  2,  0,  2,  ...
  0,  4,  2,  4,  0,  6,  ...
  2,  2,  6,  4,  2,  6,  ...
  0,  0,  0,  4,  2,  4,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[EllipticTheta[3, 0, q^d], {d, Divisors[k]}], {q, 0, n}]][i - n + 1], {i, 0, 13}, {n, 0, i}] // Flatten

Formula

G.f. of column k: Product_{d|k} theta_3(q^d).
Showing 1-4 of 4 results.