cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033764 Product t2(q^d); d | 5, where t2 = theta2(q)/(2*q^(1/4)).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 1, 0, 0, 0, 3, 1, 0, 1, 0, 1, 2, 0, 0, 0, 1, 1, 0, 1, 0, 2, 1, 0, 2, 0, 0, 3, 0, 0, 0, 1, 1, 0, 1, 0, 2, 0, 0, 0, 0, 2, 3, 0, 1, 0, 1, 1, 0, 1, 0, 3, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 0, 0, 2, 1, 0, 3, 0, 0, 2, 0, 1, 0, 2, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 3, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
Also the number of positive odd solutions to equation x^2 + 5*y^2 = 8*n + 6. - Seiichi Manyama, May 28 2017

Examples

			q^3 + q^7 + q^15 + q^23 + 2*q^27 + q^35 + q^43 + q^47 + 3*q^63 + q^67 + ...
		

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q^2]^2*(QP[q^10]^2/(QP[q]*QP[q^5])) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^10 + A)^2 / eta(x + A) / eta(x^5 + A), n))} /* Michael Somos, Mar 21 2008 */

Formula

Expansion of psi(q) * psi(q^5) where psi() is a Ramanujan theta function.
Expansion of q^(-3/4) * eta(q^2)^2 * eta(q^10)^2 / (eta(q) * eta(q^5)) in powers of q.
Euler transform of period 10 sequence [ 1, -1, 1, -1, 2, -1, 1, -1, 1, -2, ...]. - Michael Somos, Mar 21 2008
G.f.: Sum_{k} (x^(3*k) + x^(7*k+1)) / (1 - x^(20*k+5)) = Sum_{k} (x^k + x^(9*k+6)) / (1 - x^(20*k+15)).