cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033842 Triangle of coefficients of certain polynomials (exponents in decreasing order).

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 16, 16, 6, 1, 125, 125, 50, 10, 1, 1296, 1296, 540, 120, 15, 1, 16807, 16807, 7203, 1715, 245, 21, 1, 262144, 262144, 114688, 28672, 4480, 448, 28, 1, 4782969, 4782969, 2125764, 551124, 91854, 10206, 756, 36, 1, 100000000
Offset: 0

Views

Author

Keywords

Comments

See A049323.

Examples

			{1}; {1,1}; {3,3,1}; {16,16,6,1}; {125,125,50,10,1}; .... E.g. third row {3,3,1} corresponds to polynomial p(2,x)= 3*x^2+3*x+1.
		

Crossrefs

a(n, 0)= A000272(n+1), n >= 0 (first column), a(n, 1)= A000272(n+1), n >= 1 (second column). p(k-1, -x)/(1-k*x)^k = (-1+1/(1-k*x)^k)/(x*k^2) is for k=1..5 G.f. for A000012, A001792, A036068, A036070, A036083, respectively.
See also A049323.

Formula

a(n, m) = binomial(n+1, m)*(n+1)^(n-m-1), n >= m >= 0 else 0.