cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A049323 Triangle of coefficients of certain polynomials (exponents in increasing order), equivalent to A033842.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 6, 16, 16, 1, 10, 50, 125, 125, 1, 15, 120, 540, 1296, 1296, 1, 21, 245, 1715, 7203, 16807, 16807, 1, 28, 448, 4480, 28672, 114688, 262144, 262144, 1, 36, 756, 10206, 91854, 551124, 2125764, 4782969, 4782969, 1, 45, 1200, 21000, 252000
Offset: 0

Views

Author

Keywords

Comments

These polynomials p(n, x) appear in the W. Lang reference as c1(-(n+1);x), n >= 0 on p.12. The coefficients are given there in eq.(44) on p. 6. - Wolfdieter Lang, Nov 20 2015

Examples

			The triangle a(n, m) begins:
n\m 0  1   2    3     4      5      6      7 ...
0:  1
1:  1  1
2:  1  3   3
3:  1  6  16   16
4:  1 10  50  125  125
5:  1 15 120  540  1296  1296
6:  1 21 245 1715  7203  16807  16807
7:  1 28 448 4480 28672 114688 262144 262144
... reformatted. - Wolfdieter Lang, Nov 20 2015
E.g. the third row {1,3,3} corresponds to polynomial p(2,x)= 1 + 3*x + 3*x^2.
		

Crossrefs

a(n, 0)= A000012 (powers of 1), a(n, 1)= A000217 (triangular numbers), a(n, n)= A000272(n+1), n >= 0 (diagonal), a(n, n-1)= A000272(n+1), n >= 1.
For n = 0..5 the row sequences a(n, m), m >= 0, are the first columns of the triangles A023531 (unit matrix), A030528, A049324, A049325, A049326, A049327, respectively.

Programs

  • Magma
    /* As triangle: */ [[Binomial(n+1, k+1)*(n+1)^(k-1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Nov 20 2015
  • Maple
    seq(seq(binomial(n+1,m+1)*(n+1)^(m-1),m=0..n),n=0..10); # Robert Israel, Oct 19 2015
  • Mathematica
    Table[Binomial[n + 1, k + 1] (n + 1)^(k - 1), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Nov 19 2015 *)

Formula

a(n, m) = A033842(n, n-m) = binomial(n+1, m+1)*(n+1)^{m-1}, n >= m >= 0, else 0.
p(k-1, -x)/(1-k*x)^k =(-1+1/(1-k*x)^k)/(x*k^2) is for k=1..5 G.f. for A000012, A001792, A036068, A036070, A036083, respectively.
From Werner Schulte, Oct 19 2015: (Start)
a(2*n,n) = A000108(n)*(2*n+1)^n;
a(3*n,2*n) = A001764(n)*(3*n+1)^(2*n);
a(p*n,(p-1)*n) = binomial(p*n,n)/((p-1)*n+1)*(p*n+1)^((p-1)*n) for p > 0;
Sum_{m=0..n} (m+1)*a(n,m) = (n+2)^n;
Sum_{m=0..n} (-1)^m*(m+1)*a(n,m) = (-n)^n where 0^0 = 1;
p(n,x) = Sum_{m=0..n} a(n,m)*x^m = ((1+(n+1)*x)^(n+1)-1)/((n+1)^2*x).
(End)

A000272 Number of trees on n labeled nodes: n^(n-2) with a(0)=1.

Original entry on oeis.org

1, 1, 1, 3, 16, 125, 1296, 16807, 262144, 4782969, 100000000, 2357947691, 61917364224, 1792160394037, 56693912375296, 1946195068359375, 72057594037927936, 2862423051509815793, 121439531096594251776, 5480386857784802185939, 262144000000000000000000, 13248496640331026125580781
Offset: 0

Views

Author

Keywords

Comments

Number of spanning trees in complete graph K_n on n labeled nodes.
Robert Castelo, Jan 06 2001, observes that n^(n-2) is also the number of transitive subtree acyclic digraphs on n-1 vertices.
a(n) is also the number of ways of expressing an n-cycle in the symmetric group S_n as a product of n-1 transpositions, see example. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 12 2001
Also counts parking functions, critical configurations of the chip firing game, allowable pairs sorted by a priority queue [Hamel].
The parking functions of length n can be described as all permutations of all words [d(1),d(2), ..., d(n)] where 1 <= d(k) <= k; see example. There are (n+1)^(n-1) = a(n+1) parking functions of length n. - Joerg Arndt, Jul 15 2014
a(n+1) is the number of endofunctions with no cycles of length > 1; number of forests of rooted labeled trees on n vertices. - Mitch Harris, Jul 06 2006
a(n) is also the number of nilpotent partial bijections (of an n-element set). Equivalently, the number of nilpotents in the partial symmetric semigroup, P sub n. - Abdullahi Umar, Aug 25 2008
a(n) is also the number of edge-labeled rooted trees on n nodes. - Nikos Apostolakis, Nov 30 2008
a(n+1) is the number of length n sequences on an alphabet of {1,2,...,n} that have a partial sum equal to n. For example a(4)=16 because there are 16 length 3 sequences on {1,2,3} in which the terms (beginning with the first term and proceeding sequentially) sum to 3 at some point in the sequence. {1, 1, 1}, {1, 2, 1}, {1, 2, 2}, {1, 2, 3}, {2, 1, 1}, {2, 1, 2}, {2, 1, 3}, {3, 1, 1}, {3, 1, 2}, {3, 1, 3}, {3, 2, 1}, {3, 2, 2}, {3, 2, 3}, {3, 3, 1}, {3, 3, 2}, {3, 3, 3}. - Geoffrey Critzer, Jul 20 2009
a(n) is the number of acyclic functions from {1,2,...,n-1} to {1,2,...,n}. An acyclic function f satisfies the following property: for any x in the domain, there exists a positive integer k such that (f^k)(x) is not in the domain. Note that f^k denotes the k-fold composition of f with itself, e.g., (f^2)(x)=f(f(x)). - Dennis P. Walsh, Mar 02 2011
a(n) is the absolute value of the discriminant of the polynomial x^{n-1}+...+x+1. More precisely, a(n) = (-1)^{(n-1)(n-2)/2} times the discriminant. - Zach Teitler, Jan 28 2014
For n > 2, a(n+2) is the number of nodes in the canonical automaton for the affine Weyl group of type A_n. - Tom Edgar, May 12 2016
The tree formula a(n) = n^(n-2) is due to Cayley (see the first comment). - Jonathan Sondow, Jan 11 2018
a(n) is the number of topologically distinct lines of play for the game Planted Brussels Sprouts on n vertices. See Ji and Propp link. - Caleb Ji, May 11 2018
a(n+1) is also the number of bases of R^n, that can be made from the n(n+1)/2 vectors of the form [0 ... 0 1 ... 1 0 ... 0]^T, where the initial or final zeros are optional, but at least one 1 has to be included. - Nicolas Nagel, Jul 31 2018
Cooper et al. show that every connected k-chromatic graph contains at least k^(k-2) spanning trees. - Michel Marcus, May 14 2020

Examples

			a(7)=matdet([196, 175, 140, 98, 56, 21; 175, 160, 130, 92, 53, 20; 140, 130, 110, 80, 47, 18; 98, 92, 80, 62, 38, 15; 56, 53, 47, 38, 26, 11; 21, 20, 18, 15, 11, 6])=16807
a(3)=3 since there are 3 acyclic functions f:[2]->[3], namely, {(1,2),(2,3)}, {(1,3),(2,1)}, and {(1,3),(2,3)}.
From _Joerg Arndt_ and Greg Stevenson, Jul 11 2011: (Start)
The following products of 3 transpositions lead to a 4-cycle in S_4:
  (1,2)*(1,3)*(1,4);
  (1,2)*(1,4)*(3,4);
  (1,2)*(3,4)*(1,3);
  (1,3)*(1,4)*(2,3);
  (1,3)*(2,3)*(1,4);
  (1,4)*(2,3)*(2,4);
  (1,4)*(2,4)*(3,4);
  (1,4)*(3,4)*(2,3);
  (2,3)*(1,2)*(1,4);
  (2,3)*(1,4)*(2,4);
  (2,3)*(2,4)*(1,2);
  (2,4)*(1,2)*(3,4);
  (2,4)*(3,4)*(1,2);
  (3,4)*(1,2)*(1,3);
  (3,4)*(1,3)*(2,3);
  (3,4)*(2,3)*(1,2).  (End)
The 16 parking functions of length 3 are 111, 112, 121, 211, 113, 131, 311, 221, 212, 122, 123, 132, 213, 231, 312, 321. - _Joerg Arndt_, Jul 15 2014
G.f. = 1 + x + x^2 + 3*x^3 + 16*x^4 + 125*x^5 + 1296*x^6 + 16807*x^7 + ...
		

References

  • M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 1999; see p. 142.
  • Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups. Graduate Texts in Mathematics, 231. Springer, New York, 2005.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 311.
  • J. Dénes, The representation of a permutation as the product of a minimal number of transpositions and its connection with the theory of graphs, Pub. Math. Inst. Hung. Acad. Sci., 4 (1959), 63-70.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, ex. 3.3.33.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 524.
  • F. Harary, J. A. Kabell, and F. R. McMorris (1992), Subtree acyclic digraphs, Ars Comb., vol. 34:93-95.
  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.37)
  • H. Prüfer, Neuer Beweis eines Satzes über Permutationen, Archiv der Mathematik und Physik, (3) 27 (1918), 142-144.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 128.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see page 25, Prop. 5.3.2.
  • J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge Univ. Press, 1992.

Crossrefs

a(n) = A033842(n-1, 0) (first column of triangle).
a(n) = A058127(n-1, n) (right edge of triangle).
Cf. A000272 (labeled trees), A036361 (labeled 2-trees), A036362 (labeled 3-trees), A036506 (labeled 4-trees), A000055 (unlabeled trees), A054581 (unlabeled 2-trees).
Column m=1 of A105599. - Alois P. Heinz, Apr 10 2014

Programs

  • Haskell
    a000272 0 = 1; a000272 1 = 1
    a000272 n = n ^ (n - 2)  -- Reinhard Zumkeller, Jul 07 2013
    
  • Magma
    [ n^(n-2) : n in [1..10]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Maple
    A000272 := n -> ifelse(n=0, 1, n^(n-2)): seq(A000272(n), n = 0..20); # Peter Luschny, Jun 12 2022
  • Mathematica
    << DiscreteMath`Combinatorica` Table[NumberOfSpanningTrees[CompleteGraph[n]], {n, 1, 20}] (* Artur Jasinski, Dec 06 2007 *)
    Join[{1},Table[n^(n-2),{n,20}]] (* Harvey P. Dale, Nov 28 2012 *)
    a[ n_] := If[ n < 1, Boole[n == 0], n^(n - 2)]; (* Michael Somos, May 25 2014 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 - LambertW[-x] - LambertW[-x]^2 / 2, {x, 0, n}]]; (* Michael Somos, May 25 2014 *)
    a[ n_] := If[ n < 1, Boole[n == 0], With[ {m = n - 1}, m! SeriesCoefficient[ Exp[ -LambertW[-x]], {x, 0, m}]]]; (* Michael Somos, May 25 2014 *)
    a[ n_] := If[ n < 2, Boole[n >= 0], With[ {m = n - 1}, m! SeriesCoefficient[ InverseSeries[ Series[ Log[1 + x] / (1 + x), {x, 0, m}]], m]]]; (* Michael Somos, May 25 2014 *)
    a[ n_] := If[ n < 1, Boole[n == 0], With[ {m = n - 1}, m! SeriesCoefficient[ Nest[ 1 + Integrate[ #^2 / (1 - x #), x] &, 1 + O[x], m], {x, 0, m}]]]; (* Michael Somos, May 25 2014 *)
  • Maxima
    A000272[n]:=if n=0 then 1 else n^(n-2)$
    makelist(A000272[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
    
  • PARI
    {a(n) = if( n<1, n==0, n^(n-2))}; /* Michael Somos, Feb 16 2002 */
    
  • PARI
    {a(n) = my(A); if( n<1, n==0, n--; A = 1 + O(x); for(k=1, n, A = 1 + intformal( A^2 / (1 - x * A))); n! * polcoeff( A, n))}; /* Michael Somos, May 25 2014 */
    
  • PARI
    /* GP Function for Determinant of Hermitian (square symmetric) matrix for univariate polynomial of degree n by Gerry Martens: */
    Hn(n=2)= {local(H=matrix(n-1,n-1),i,j); for(i=1,n-1, for(j=1,i, H[i,j]=(n*i^3-3*n*(n+1)*i^2/2+n*(3*n+1)*i/2+(n^4-n^2)/2)/6-(i^2-(2*n+1)*i+n*(n+1))*(j-1)*j/4; H[j,i]=H[i,j]; ); ); print("a(",n,")=matdet(",H,")"); print("Determinant H =",matdet(H)); return(matdet(H)); } { print(Hn(7)); } /* Gerry Martens, May 04 2007 */
    
  • Python
    def A000272(n): return 1 if n <= 1 else n**(n-2) # Chai Wah Wu, Feb 03 2022

Formula

E.g.f.: 1 + T - (1/2)*T^2; where T=T(x) is Euler's tree function (see A000169, also A001858). - Len Smiley, Nov 19 2001
Number of labeled k-trees on n nodes is binomial(n, k) * (k*(n-k)+1)^(n-k-2).
E.g.f. for b(n)=a(n+2): ((W(-x)/x)^2)/(1+W(-x)), where W is Lambert's function (principal branch). [Equals d/dx (W(-x)/(-x)). - Wolfdieter Lang, Oct 25 2022]
Determinant of the symmetric matrix H generated for a polynomial of degree n by: for(i=1,n-1, for(j=1,i, H[i,j]=(n*i^3-3*n*(n+1)*i^2/2+n*(3*n+1)*i/2+(n^4-n^2)/2)/6-(i^2-(2*n+1)*i+n*(n+1))*(j-1)*j/4; H[j,i]=H[i,j]; ); );. - Gerry Martens, May 04 2007
a(n+1) = Sum_{i=1..n} i * n^(n-1-i) * binomial(n, i). - Yong Kong (ykong(AT)curagen.com), Dec 28 2000
For n >= 1, a(n+1) = Sum_{i=1..n} n^(n-i)*binomial(n-1,i-1). - Geoffrey Critzer, Jul 20 2009
E.g.f. for b(n)=a(n+1): exp(-W(-x)), where W is Lambert's function satisfying W(x)*exp(W(x))=x. Proof is contained in link "Notes on acyclic functions..." - Dennis P. Walsh, Mar 02 2011
From Sergei N. Gladkovskii, Sep 18 2012: (Start)
E.g.f.: 1 + x + x^2/(U(0) - x) where U(k) = x*(k+1)*(k+2)^k + (k+1)^k*(k+2) - x*(k+2)^2*(k+3)*((k+1)*(k+3))^k/U(k+1); (continued fraction).
G.f.: 1 + x + x^2/(U(0)-x) where U(k) = x*(k+1)*(k+2)^k + (k+1)^k - x*(k+2)*(k+3)*((k+1)*(k+3))^k/E(k+1); (continued fraction). (End)
Related to A000254 by Sum_{n >= 1} a(n+1)*x^n/n! = series reversion( 1/(1 + x)*log(1 + x) ) = series reversion(x - 3*x^2/2! + 11*x^3/3! - 50*x^4/4! + ...). Cf. A052750. - Peter Bala, Jun 15 2016
For n >= 3 and 2 <= k <= n-1, the number of trees on n vertices with exactly k leaves is binomial(n,k)*S(n-2,n-k)(n-k)! where S(a,b) is the Stirling number of the second kind. Therefore a(n) = Sum_{k=2..n-1} binomial(n,k)*S(n-2,n-k)(n-k)! for n >= 3. - Jonathan Noel, May 05 2017

A049324 A convolution triangle of numbers generalizing Pascal's triangle A007318.

Original entry on oeis.org

1, 3, 1, 3, 6, 1, 0, 15, 9, 1, 0, 18, 36, 12, 1, 0, 9, 81, 66, 15, 1, 0, 0, 108, 216, 105, 18, 1, 0, 0, 81, 459, 450, 153, 21, 1, 0, 0, 27, 648, 1305, 810, 210, 24, 1, 0, 0, 0, 594, 2673, 2970, 1323, 276, 27, 1, 0, 0, 0, 324, 3915, 7938
Offset: 1

Views

Author

Keywords

Examples

			{1}; {3,1}; {3,6,1}; {0,15,9,1}; {0,18,36,12,1}; ...
		

Crossrefs

a(n, m) := s1(-2, n, m), a member of a sequence of triangles including s1(0, n, m)= A023531(n, m) (unit matrix) and s1(2, n, m)=A007318(n-1, m-1) (Pascal's triangle). s1(-1, n, m)= A030528.

Formula

a(n, m) = 3*(3*m-n+1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, nA033842(2, m)).

A049325 A convolution triangle of numbers generalizing Pascal's triangle A007318.

Original entry on oeis.org

1, 6, 1, 16, 12, 1, 16, 68, 18, 1, 0, 224, 156, 24, 1, 0, 448, 840, 280, 30, 1, 0, 512, 3072, 2080, 440, 36, 1, 0, 256, 7872, 10896, 4160, 636, 42, 1, 0, 0, 14080, 42240, 28240, 7296, 868, 48, 1, 0, 0, 16896, 123904, 145376, 60720, 11704, 1136, 54, 1, 0, 0, 12288
Offset: 1

Views

Author

Keywords

Examples

			{1}; {6,1}; {16,12,1}; {16,68,18,1}; {0,224,156,24,1}; ...
		

Crossrefs

a(n, m) := s1(-3, n, m), a member of a sequence of triangles including s1(0, n, m)= A023531(n, m) (unit matrix) and s1(2, n, m)=A007318(n-1, m-1) (Pascal's triangle). s1(-1, n, m)= A030528, s1(-2, n, m)= A049324(n, m).
Cf. A049349.

Formula

a(n, m) = 4*(4*m-n+1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, nA033842(3, m)).

A049326 A convolution triangle of numbers generalizing Pascal's triangle A007318.

Original entry on oeis.org

1, 10, 1, 50, 20, 1, 125, 200, 30, 1, 125, 1250, 450, 40, 1, 0, 5250, 4375, 800, 50, 1, 0, 15000, 30375, 10500, 1250, 60, 1, 0, 28125, 157500, 100500, 20625, 1800, 70, 1, 0, 31250, 621875, 740000, 250625, 35750, 2450, 80, 1, 0, 15625, 1875000, 4318750
Offset: 1

Views

Author

Keywords

Examples

			{1}; {10,1}; {50,20,1}; {125,200,30,1}; {125,1250,450,40,1}; ...
		

Crossrefs

a(n, m) := s1(-4, n, m), a member of a sequence of triangles including s1(0, n, m)= A023531(n, m) (unit matrix) and s1(2, n, m)=A007318(n-1, m-1) (Pascal's triangle). s1(-1, n, m)= A030528.
Cf. A049350.

Formula

a(n, m) = 5*(5*m-n+1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, nA033842(4, m)).

A049327 A convolution triangle of numbers generalizing Pascal's triangle A007318.

Original entry on oeis.org

1, 15, 1, 120, 30, 1, 540, 465, 45, 1, 1296, 4680, 1035, 60, 1, 1296, 33192, 15795, 1830, 75, 1, 0, 171072, 176688, 37260, 2850, 90, 1, 0, 641520, 1521828, 563409, 72450, 4095, 105, 1, 0, 1710720, 10359360, 6686064, 1375605, 124740, 5565, 120, 1
Offset: 1

Views

Author

Keywords

Examples

			{1}; {15,1}; {120,30,1}; {540,465,45,1}; {1296,4680,1035,60,1}; ...
		

Crossrefs

a(n, m) := s1(-5, n, m), a member of a sequence of triangles including s1(0, n, m)= A023531(n, m) (unit matrix) and s1(2, n, m)=A007318(n-1, m-1) (Pascal's triangle). s1(-1, n, m)= A030528.
Cf. A049351.

Formula

a(n, m) = 6*(6*m-n+1)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, nA033842(5, m)).

A046757 Triangle of coefficients of certain polynomials (exponents in decreasing order).

Original entry on oeis.org

1, 2, 1, 5, 5, 1, 30, 30, 10, 1, 272, 272, 102, 17, 1, 3250, 3250, 1300, 260, 26, 1, 47952, 47952, 19980, 4440, 555, 37, 1, 840350, 840350, 360150, 85750, 12250, 1050, 50, 1, 17039360, 17039360, 7454720, 1863680, 291200, 29120, 1820, 65, 1, 392203458
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
  {1};
  {2,1};
  {5,5,1};
  {30,30,10,1};
  {272,272,102,17,1};
  ....
E.g. third row {5,5,1} corresponds to polynomial q(3,x)= 5*x^2+5*x+1.
		

Crossrefs

x*p(k-1, -x)/q(k, -x), with the row polynomials p(n, x) from triangle A033842(n, m) is for k=1..5 g.f. for A000079 (powers of two), A039717, A043553, A045624, A046088, respectively.

Formula

a(n, n) = 1, a(n, m) = (1+n^2)*binomial(n, m)*n^(n-m-2), n>m >= 0, else 0.

A049348 Row sums of triangle A049324.

Original entry on oeis.org

1, 4, 10, 25, 67, 172, 448, 1165, 3025, 7864, 20434, 53101, 137995, 358600, 931888, 2421673, 6293137, 16353820, 42498250, 110439121, 286995331, 745807444, 1938110800, 5036519125, 13088273857, 34012163632, 88386542578
Offset: 1

Views

Author

Keywords

Comments

p(2,x) is row polynomial corresponding to triangle row A033842(2,m).

Formula

G.f.: x*(1+3*x+3*x^2)/(1-x-3*x^2-3*x^3)= x*p(2, x)/(1-x*p(2, x)) with x*p(2, x) G.f. for first column of A049324.
Limit_{n-->oo} a(n+1)/a(n) = 3/(10^(1/3)-1) = 2.5986745... - Paul D. Hanna, Oct 13 2004

A049349 Row sums of triangle A049325.

Original entry on oeis.org

1, 7, 29, 103, 405, 1599, 6141, 23863, 92773, 359791, 1396493, 5421415, 21041397, 81670431, 317005341, 1230432919, 4775854213, 18537264079, 71951401517, 279275580103, 1083993881877, 4207466012031, 16331061009213
Offset: 1

Views

Author

Keywords

Comments

p(3,x) is row polynomial corresponding to triangle row A033842(3,m).

Formula

G.f.: x*(1+6*x+16*x^2+16*x^3)/(1-x-6*x^2-16*x^3-16*x^4) = x*p(3, x)/(1-x*p(3, x)) with x*p(3, x) G.f. for first column of A049325.

A049350 Row sums of triangle A049326.

Original entry on oeis.org

1, 11, 71, 356, 1866, 10476, 57186, 308621, 1682031, 9170291, 49879401, 271409736, 1477549796, 8042157456, 43769353716, 238229560201, 1296650911661, 7057377605971, 38411803629131, 209067989511516
Offset: 1

Views

Author

Keywords

Comments

p(4,x) is row polynomial corresponding to triangle row A033842(4,m).

Formula

G.f. x*p(4, x)/(1-x*p(4, x)) with x*p(4, x)= x*(1+10*x+50*x^2+125*x^3+125*x^4) G.f. for first column of A049326.
Showing 1-10 of 12 results. Next