1, 2, 1, 2, 6, 1, 0, 20, 12, 1, 0, 40, 80, 20, 1, 0, 40, 360, 220, 30, 1, 0, 0, 1120, 1680, 490, 42, 1, 0, 0, 2240, 9520, 5600, 952, 56, 1, 0, 0, 2240, 40320, 48720, 15120, 1680, 72, 1, 0, 0, 0, 123200, 332640, 184800, 35280, 2760, 90, 1, 0, 0, 0, 246400, 1786400
Offset: 1
E.g. row polynomial E(3,x) = 2*x+6*x^2+x^3.
Triangle starts:
{1}
{2, 1}
{2, 6, 1}
{0, 20, 12, 1}
A049325
A convolution triangle of numbers generalizing Pascal's triangle A007318.
Original entry on oeis.org
1, 6, 1, 16, 12, 1, 16, 68, 18, 1, 0, 224, 156, 24, 1, 0, 448, 840, 280, 30, 1, 0, 512, 3072, 2080, 440, 36, 1, 0, 256, 7872, 10896, 4160, 636, 42, 1, 0, 0, 14080, 42240, 28240, 7296, 868, 48, 1, 0, 0, 16896, 123904, 145376, 60720, 11704, 1136, 54, 1, 0, 0, 12288
Offset: 1
{1}; {6,1}; {16,12,1}; {16,68,18,1}; {0,224,156,24,1}; ...
a(n, m) := s1(-3, n, m), a member of a sequence of triangles including s1(0, n, m)=
A023531(n, m) (unit matrix) and s1(2, n, m)=
A007318(n-1, m-1) (Pascal's triangle). s1(-1, n, m)=
A030528, s1(-2, n, m)=
A049324(n, m).
A049323
Triangle of coefficients of certain polynomials (exponents in increasing order), equivalent to A033842.
Original entry on oeis.org
1, 1, 1, 1, 3, 3, 1, 6, 16, 16, 1, 10, 50, 125, 125, 1, 15, 120, 540, 1296, 1296, 1, 21, 245, 1715, 7203, 16807, 16807, 1, 28, 448, 4480, 28672, 114688, 262144, 262144, 1, 36, 756, 10206, 91854, 551124, 2125764, 4782969, 4782969, 1, 45, 1200, 21000, 252000
Offset: 0
The triangle a(n, m) begins:
n\m 0 1 2 3 4 5 6 7 ...
0: 1
1: 1 1
2: 1 3 3
3: 1 6 16 16
4: 1 10 50 125 125
5: 1 15 120 540 1296 1296
6: 1 21 245 1715 7203 16807 16807
7: 1 28 448 4480 28672 114688 262144 262144
... reformatted. - Wolfdieter Lang, Nov 20 2015
E.g. the third row {1,3,3} corresponds to polynomial p(2,x)= 1 + 3*x + 3*x^2.
a(n, 0)=
A000012 (powers of 1), a(n, 1)=
A000217 (triangular numbers), a(n, n)=
A000272(n+1), n >= 0 (diagonal), a(n, n-1)=
A000272(n+1), n >= 1.
-
/* As triangle: */ [[Binomial(n+1, k+1)*(n+1)^(k-1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Nov 20 2015
-
seq(seq(binomial(n+1,m+1)*(n+1)^(m-1),m=0..n),n=0..10); # Robert Israel, Oct 19 2015
-
Table[Binomial[n + 1, k + 1] (n + 1)^(k - 1), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Nov 19 2015 *)
Comments