A033918 Triangular array in which n-th row consists of the numbers 1^1, 2^2, ... n^n.
1, 1, 4, 1, 4, 27, 1, 4, 27, 256, 1, 4, 27, 256, 3125, 1, 4, 27, 256, 3125, 46656, 1, 4, 27, 256, 3125, 46656, 823543, 1, 4, 27, 256, 3125, 46656, 823543, 16777216, 1, 4, 27, 256, 3125, 46656, 823543, 16777216, 387420489, 1, 4, 27, 256, 3125, 46656
Offset: 1
Examples
1; 1, 4; 1, 4, 27; 1, 4, 27, 256; 1, 4, 27, 256, 3125; 1, 4, 27, 256, 3125, 46656; 1, 4, 27, 256, 3125, 46656, 823543; ...
Links
- Timur I Khantimirov and Boris Putievskiy (first 51 from Timur I Khantimirov), Table of n, a(n) for n = 1..1000
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
Programs
-
Mathematica
Module[{nn=10,c},c=Table[n^n,{n,nn}];Flatten[Table[Take[c,i],{i,nn}]]] (* Harvey P. Dale, Nov 02 2014 *)
-
Python
t=int((math.sqrt(8*n-7) - 1)/ 2) m=(n-t*(t+1)/2)**(n-t*(t+1)/2)
Formula
a(n) = A000312(m), where m= n-t(t+1)/2, t=floor((-1+sqrt(8*n-7))/2) or a(n)=(n-t(t+1)/2)^(n-t(t+1)/2), where t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 14 2012
Comments