cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A046287 Numbers k such that 2^k contains 2^1=2 as its largest proper substring of the form 2^m (probably finite).

Original entry on oeis.org

5, 8, 9, 17, 21
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Cf. A033921.

A046291 Numbers k such that 2^k contains 2^5=32 as its largest proper substring of the form 2^m.

Original entry on oeis.org

15, 25, 41, 45, 47, 65, 71, 73, 76, 82, 85, 95, 97, 100, 110, 112, 118, 120, 132, 137, 143, 145, 147, 151, 154, 156, 158, 160, 162, 164, 170, 179, 180, 185, 195, 196, 201, 214, 216, 219, 225, 227, 233, 235, 238, 251, 252, 275, 284, 290, 295, 297, 301, 304
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

If there is a term beyond a(108)=1862 it is larger than 10^5. - Giovanni Resta, Oct 14 2019

Examples

			2^15 = {32}768;
2^25 = 335544{32};
2^41 = 219902{32}55552.
		

Crossrefs

Cf. A033921.

Programs

  • Mathematica
    sub2[n_] := Block[{s = ToString[2^n], k = n - 1}, While[k >= 0 && ! StringContainsQ[s, ToString[2^k]], k--]; k]; Select[Range[2000], sub2[#] == 5 &] (* Giovanni Resta, Oct 14 2019 *)

A046292 Numbers k such that 2^k contains 2^6=64 as its largest proper substring of the form 2^m.

Original entry on oeis.org

26, 31, 46, 59, 66, 67, 72, 77, 83, 86, 89, 92, 96, 101, 106, 111, 116, 119, 123, 124, 125, 126, 129, 131, 136, 138, 141, 142, 144, 148, 152, 153, 155, 157, 163, 165, 166, 171, 176, 177, 178, 181, 182, 183, 186, 193, 194, 197, 198, 199, 202, 204, 205, 206
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

If there is a term beyond a(747) = 7954, it is larger than 250000. - Giovanni Resta, Oct 14 2019

Examples

			2^26 = 671088{64};
2^31 = 2147483{64}8;
2^46 = 703687441776{64}.
		

Crossrefs

Cf. A033921.

Programs

  • Mathematica
    sub2[n_] := Block[{s = ToString[2^n], k = n - 1}, While[k >= 0 && ! StringContainsQ[s, ToString[2^k]], k--]; k]; Select[Range[300], sub2[#] == 6 &] (* Giovanni Resta, Oct 14 2019 *)

A046296 Numbers k such that 2^k contains 2^10 = 1024 as its largest proper substring of the form 2^m.

Original entry on oeis.org

224, 278, 286, 473, 502, 510, 645, 656, 698, 744, 871, 889, 909, 921, 955, 960, 966, 972, 1010, 1062, 1086, 1113, 1163, 1182, 1200, 1201, 1208, 1271, 1273, 1282, 1315, 1327, 1377, 1431, 1444, 1510, 1541, 1550, 1564, 1570, 1583, 1610, 1626, 1674, 1677
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Programs

  • Mathematica
    sub2[n_] := Block[{s = ToString[2^n], k = n - 1}, While[k >= 0 && ! StringContainsQ[s, ToString[2^k]], k--]; k]; Select[Range[1677], sub2[#] == 10 &] (* Giovanni Resta, Oct 14 2019 *)

A046299 Numbers k such that 2^k contains 2^13=8192 as its largest proper substring of the form 2^m.

Original entry on oeis.org

105, 269, 406, 463, 505, 513, 518, 536, 559, 570, 659, 821, 924, 948, 981, 993, 995, 1013, 1081, 1133, 1136, 1165, 1199, 1246, 1279, 1281, 1312, 1330, 1331, 1344, 1354, 1362, 1363, 1408, 1434, 1436, 1447, 1454, 1480, 1488, 1491, 1499, 1501, 1503, 1513
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			2^105 = 40564{8192}07303340847894502572032.
		

Crossrefs

Cf. A033921.

Programs

  • Mathematica
    sub2[n_] := Block[{s = ToString[2^n], k = n - 1}, While[k >= 0 && ! StringContainsQ[ s, ToString[2^k]], k--]; k]; Select[Range[1513], sub2[#] == 13 &] (* Giovanni Resta, Oct 14 2019 *)

Extensions

Definition and offset changed by M. F. Hasler, Oct 11 2019

A046300 Smallest integer k such that 2^n is the largest power of two that is contained in 2^k as a proper substring.

Original entry on oeis.org

4, 5, 6, 7, 14, 15, 26, 102, 108, 109, 224, 103, 104, 105, 506, 507, 452, 1169, 1170, 1171, 8228, 10419, 15186, 5227, 16619, 16620, 16621, 25102, 130090, 62640, 330791, 330792, 351403, 273100, 681504, 649069, 352375, 3045104, 3045105, 3635007
Offset: 0

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Comments

First terms of A046287-A046299.

Examples

			2^4={1}6 and 2^0=1; 2^5=3{2} and 2^1=2; 2^6=6{4} and 2^2=4; etc.
		

Crossrefs

Cf. A033921.

Extensions

Definition reworded, offset changed to 0, and terms a(20)-a(36) added by Jon E. Schoenfield, Jun 04 2010
a(37)-a(39) from Jon E. Schoenfield, Jul 10 2010

A046288 Numbers k such that 2^k contains 2^2=4 as its largest proper substring of the form 2^m (probably finite).

Original entry on oeis.org

6, 10, 12, 18, 22, 32, 49, 52, 53, 56, 78
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Cf. A033921.

Programs

  • Mathematica
    sub2[n_] := Block[{s = ToString[2^n], k = n - 1}, While[k >= 0 && ! StringContainsQ[s, ToString[2^k]], k--]; k]; Select[Range[1000], sub2[#] == 2 &] (* Giovanni Resta, Oct 14 2019 *)

A046289 Numbers k such that 2^k contains 2^3=8 as its largest proper substring of the form 2^m (probably finite).

Original entry on oeis.org

7, 11, 13, 19, 20, 23, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 42, 43, 48, 50, 51, 54, 55, 57, 58, 60, 61, 63, 68, 69, 74, 79, 80, 87, 88, 90, 91, 93, 94, 113, 115, 121, 128, 130, 139, 149, 150, 168, 169, 172, 173, 174, 187, 229, 337, 338, 376, 417
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Crossrefs

Cf. A033921.

Programs

  • Mathematica
    sub2[n_] := Block[{s = ToString[2^n], k = n - 1}, While[k >= 0 && ! StringContainsQ[s, ToString[2^k]], k--]; k]; Select[Range[500], sub2[#] == 3 &] (* Giovanni Resta, Oct 14 2019 *)

A046290 Numbers k such that 2^k contains 2^4=16 as its largest proper substring of the form 2^m (probably finite).

Original entry on oeis.org

14, 24, 40, 44, 62, 64, 70, 75, 81, 84, 98, 99, 114, 117, 122, 127, 133, 134, 140, 159, 167, 175, 184, 188, 189, 190, 200, 212, 215, 232, 234, 273, 274, 282, 292, 300, 318, 348, 377, 440, 516, 527, 620
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			2^14 = {16}384;
2^24 = {16}7772{16};
2^40 = 109951{16}27776.
		

Crossrefs

Cf. A033921.

Programs

  • Mathematica
    sub2[n_] := Block[{s = ToString[2^n], k = n - 1}, While[k >= 0 && ! StringContainsQ[s, ToString[2^k]], k--]; k]; Select[Range[2000], sub2[#] == 4 &] (* Giovanni Resta, Oct 14 2019 *)

A046293 Numbers k such that 2^k contains 2^7=128 as its largest proper substring of the form 2^m.

Original entry on oeis.org

102, 107, 203, 207, 248, 257, 263, 271, 307, 312, 321, 324, 329, 331, 343, 357, 362, 385, 390, 429, 458, 469, 486, 491, 524, 535, 546, 553, 568, 569, 586, 607, 614, 625, 627, 633, 634, 640, 648, 651, 662, 665, 668, 675, 688, 695, 702, 707, 711, 712, 715
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			2^102 = 50706024009129176059868{128}21504.
		

Crossrefs

Cf. A033921.
Showing 1-10 of 14 results. Next